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ABSTRACT. This article is concerned with frame constructions on domains and manifolds. The
starting point is a unitary group representation which is square integrable modulo a suitable
subgroup and therefore gives rise to a generalized continuous wavelet transform. Then gener-
alized coorbit spaces can be defined by collecting all functions for which this wavelet transform
is contained in a weighted Lp-space. Moreover, we show that a judicious discretization of the
representation leads to an atomic decomposition and to Banach frames for these coorbit spaces.

1. Introduction

One of the classical tasks in applied analysis is the efficient representation/analysis
of a given signal. Usually, the first step is the decomposition of the signal into suitable
building blocks. Starting with Fourier analysis around 1820, many more or less successful
approaches have been suggested. Current interest especially centers around multiscale
representations of wavelet type. Wavelet bases have several remarkable advantages. Among
others, they give rise to characterizations of function spaces such as Besov spaces and
provide powerful approximation schemes, see, e.g., [5, 6]. However, in recent studies, it
has turned out that the use of Riesz bases may have some serious drawbacks. One important
problem is the lack of flexibility which is in some sense a consequence of the uniqueness of
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the representation. Therefore, one natural way out suggests itself: why not using a slightly
weaker concept and allowing some redundancies, i.e., why not working with frames? In
general, given a Hilbert space H, a collection of elements {ei}i∈Z is called a frame if there
exist constants 0 < A1 ≤ A2 < ∞ such that

A1‖f ‖2
H ≤

∑
i∈Z

|〈f, ei〉H|2 ≤ A2‖f ‖2
H . (1.1)

The frame concept has been introduced by Duffin and Schäfer [7]. However, the starting
point of the modern frame theory was the fundamental Feichtinger/Gröchenig theory which
has been developed since 1986 in a series of articles [9, 10, 11, 12, 13]. This very aestetic and
subtle theory is essentially based on group theory. Given a Hilbert space H, the first step is
to find a suitable group G that admits a (square) integrable representation in H and therefore
gives rise to a generalized (continuous) wavelet transform. Then, so-called coorbit spaces
can be defined by collecting all functions for which this wavelet transform is contained in
some weighted Lp-space. Finally, a judicious discretization of the representation produces
the desired frames for the coorbit spaces. This approach works fine for the whole Euclidean
plane and produces a general framework that covers, e.g., the classical wavelet and Weyl–
Heisenberg frames. However, when it comes to practical applications, also the case of
bounded domains and manifolds is important. Then, very often the problem arises that the
group acting on the manifold is too ‘large,’ i.e., its representation is not square integrable.
One natural remedy as suggested, e.g., by Ali et al. [1] and Torresani [18], is the concept of
square-integrability modulo quotients. In this case, one has to find a certain subgroup P such
that, after restricting the representation to the induced quotient space G/P , one is again in a
square integrable setting. However, by this passage to quotients the very convenient group
structure gets lost, so that many of the building blocks used in the Feichtinger/Gröchenig
theory such as convolutions are no longer available. Nevertheless, in the previous article [3],
we have shown that a quite natural generalization of the Feichtinger/Gröchenig theory to
quotient spaces is indeed possible. The major tool was a generalized reproducing kernel.
The application of the corresponding integral operator in some sense replaces the usual
convolution. Then, under certain integrability conditions on this kernel it has turned out
that all the basic steps of the Feichtinger/Gröchenig approach can still be performed. By
employing the concept of square-integrability modulo quotients, generalized coorbit spaces
may be defined. Moreover, one can define an approximation operator which produces
atomic decompositions for these coorbit spaces. Furthermore, a reconstruction operator
can be introduced in a similar fashion and the Banach frame property can be established.

To keep the technical difficulties at a reasonable level, in [3] only the ‘simplest’ class
of coorbit spaces was considered. However, the coorbit approach allows the definition of
whole scales of smoothness spaces by collecting all functions for which the generalized
wavelet transform has certain decay properties, i.e., by considering weighted spaces. To
fill this gap is the major aim of the present work.

This article is organized as follows. In Section 2, we collect all the facts on group
theory that are needed for our purposes. Then, in Section 3, we introduce and analyze our
generalized weighted coorbit spaces. Section 4 contains the main results of this article. In
Section 4.1 we explain the setting and state all the conditions that are needed to establish
atomic decompositions and Banach frames for the generalized weighted coorbit spaces.
Section 4.2 is devoted to the definition and the analysis of the underlying approximation
operators. Then, in Section 4.3 we establish the frame bounds. This part of our analysis
is essentially based on a version of the Riesz–Thorin interpolation theorem. Since this
specific version was not found in the literature, we have included a proof based on complex
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interpolation in the appendix. It turns out that the analysis can also be carried over to the dual
spaces of the weighted coorbit spaces. The arguments are sketched in Section 4.4. Finally,
in Section 5, we explain how the whole machinery can be used to analyze functions on the
spheres. In particular, we show that the analysis presented in this article enables us to define
generalized modulation spaces on the spheres and to construct atomic decompositions and
Banach frames for them.

2. Group Theoretical Background

Let G be a separable, locally compact, topological Hausdorff group with right Haar
measure ν. A unitary representation of G in a Hilbert space H is defined as a mapping
U of G into the space of unitary operators on H such that U(g ◦ g′) = U(g)U(g′) for all
g, g′ ∈ G and U(e) = Id. A unitary representation U is called

• irreducible, if the only closed subspaces of H which are invariant under all oper-
ators U(g) (g ∈ G) are {0} and H,

• strongly continuous, if the mapping g 	→ U(g)ϕ is continuous from G to H for
all ϕ ∈ H.

The representationU is said to be square integrable, if there exists a nonzero vectorψ ∈ H
which fulfills the admissibility condition

∫
G

|〈ψ,U(g)ψ〉H|2 dν(g) < ∞ .

Strongly continuous, irreducible, unitary representations which are square integrable form
the background of the short-time Fourier transform and the continuous wavelet transform,
where the relevant groups are the reduced Weyl–Heisenberg group and the affine group,
respectively. Unfortunately, there are many cases of practical interest, where the group is
too large such that no square integrable representation exists. Typical examples are the
Schrödinger representations of the Weyl–Heisenberg group on L2(R

n). Very often, these
cases can be handled by restricting U to a homogeneous space X = G/P , where P is a
closed subgroup of G. Unless otherwise stated, we shall always consider right coset spaces
Pg (g ∈ G). Because U is not directly defined on X, it is necessary to embed X in G.
This can be realized by using the canonical fiber bundle structure of G with projection
� : G → X. In the following, let σ : X → G be a Borel section of this fiber bundle,
i.e., � ◦ σ(h) = h for all h ∈ X. In this article, we always assume that X carries a G-
invariant measure µ, i.e., a measure invariant under the action h 	→ hg (h ∈ X, g ∈ G).
Of course such a measure does not exist for every X = G/P . However, X always carries
a quasi-invariant measure and possible generalizations to this setting will be studied in a
forthcoming article [4]. Unless otherwise stated, in this article 〈·, ·〉 always denotes the
L2-inner product

〈F,G〉 =
∫
X

F(x)G(x) dµ(x)

whenever the integral is defined.
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By [1], an irreducible, unitary representation U of G on H is called square integrable
mod (P, σ ), if there exists ψ ∈ H such that the integral

∫
X

〈
f,U

(
σ(h)−1)ψ 〉

H U
(
σ(h)−1)ψ dµ(h)

converges weakly to a positive, bounded operator Aσ (dependent on σ and ψ) which has a
bounded inverse A−1

σ , in the sense that

〈Aσf, g〉H =
∫
X

〈
f,U

(
σ(h)−1)ψ 〉

H
〈
g,U

(
σ(h)−1

)
ψ

〉
H dµ(h) . (2.1)

If Aσ = λ Id for some λ > 0, then we call U strictly square integrable mod (P, σ ) and
(ψ, σ ) a strictly admissible pair. In this article, we focus our attention to strictly square
integrable representations, where we normalize ψ so that λ = 1. The general square
integrable case for homogeneous spaces will be handled in the forthcoming article [4].

If U is strictly square integrable mod (P, σ ) for ψ ∈ H, then it is well-known, see,
e.g., [1] that the set

Oσ :=
{
U

(
σ(h)−1)ψ : h ∈ X

}
is total in H, i.e., (Oσ )

⊥ = {0} and that the map Vψ : H → L2(X) given by

Vψf (h) := 〈
f,U

(
σ(h)−1)ψ 〉

H (2.2)

is an isometry from H onto the reproducing kernel Hilbert space

M2 := {
F ∈ L2(X) : 〈F,R(h, ·)〉 = F(h)

}
with Hermitian reproducing kernel

R(h, l) = R(ψ,σ)(h, l) := 〈
U

(
σ(h)−1)ψ,U(

σ(l)−1)ψ 〉
H (2.3)

= 〈
ψ,U

(
σ(h)σ (l)−1)ψ 〉

H
= Vψ

(
U

(
σ(h)−1)ψ)

(l) .

Note that by the Schwarz inequality

ess sup
h,l∈X

|R(h, l)| ≤ ‖ψ‖2
H . (2.4)

Thus, Vψ can be inverted on its range M2 by its adjoint V ∗
ψ given by

V ∗
ψF(s) :=

∫
X

F(h)U
(
σ(h)−1)ψ(s) dµ(h) .

For f ∈ H, this provides us with the reconstruction formula

f = V ∗
ψVψf =

∫
X

〈
f,U

(
σ(h)−1)ψ 〉

HU
(
σ(h)−1)ψ dµ(h) . (2.5)
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3. Weighted Coorbit Spaces on Homogeneous Spaces

In this section, we extend our considerations of functions belonging to coorbit spaces
on manifolds, cf. [3], to the concept of weighted coorbit spaces. By this extension we are
able to characterize a wide range of function spaces on manifolds, e.g., in dependence on the
underlying group we may obtain generalized modulation and Besov spaces, respectively,
or some mixed function spaces. In order to keep comparisons as simple as possible, we
adapt the notations given in [3, 9, 10, 11, 12, 13].

Let U be a strictly square integrable representation of G mod (P, σ ) with a strictly
admissible function ψ . We introduce a positive, continuous weight function w on G which
is in addition submultiplicative, i.e., w(g ◦ g̃) ≤ w(g)w(g̃) for all g, g̃ ∈ G, and uniformly
bounded from below, i.e., w(g) ≥ 1 for all g ∈ G. Associated with w we are concerned
with the weighted Lp-spaces on X = G/P defined for 1 ≤ p < ∞ by

Lp,w(X) :=
{
f measurable on X : ‖f ‖Lp,w :=

(∫
X

|f (h)|pw(σ(h))p dµ(h)
)1/p

< ∞
}
,

and for p = ∞ by

L∞,w(X) :=
{
f measurable on X : ‖f ‖L∞,w := ess sup

h∈X
|f (h)|w(σ(h)) < ∞

}
.

Throughout this article, we impose the fundamental condition

∫
X

|R(h, l)|w(σ(h))
w(σ(l))

dµ(h) ≤ Cψ (3.1)

with a constant Cψ independent of l. This implies by (2.3) that Vψ(U(σ(l)−1)ψ) ∈
L1,w(X) for all l ∈ X.

The first problem is to provide a suitable large set that may serve as a reservoir of
selection for the objects of our coorbit spaces. ByH ′

1,w we denote the space of all continuous
linear functionals on the linear space

H1,w := {
f ∈ H : Vψf ∈ L1,w(X)

}
.

The norm ‖ · ‖H1,w on H1,w is defined as

‖f ‖H1,w := ‖Vψf ‖L1,w .

Lemma 1.
The following dense and continuous embeddings hold true

H1,w ↪→ H ↪→ H ′
1,w .
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Proof. By (3.1) we observe that Oσ ⊂ H1,w. Since Oσ is total in H we conclude that
H1,w is dense in H. Further, for f ∈ H1,w, we have by the Schwarz inequality that

‖f ‖2
H = ‖Vψf ‖2

L2
=

∫
X

∣∣〈f,U(
σ(h)−1)ψ 〉

H
∣∣ |Vψf (h)| dµ(h)

≤ ‖f ‖H ‖ψ‖H
∫
X

|Vψf (h)| dµ(h)

≤ ‖f ‖H ‖ψ‖H ‖Vψf ‖L1,w .

Thus, ‖f ‖H ≤ ‖ψ‖H ‖f ‖H1,w . This implies that H1,w ↪→ H. The remaining part of the
proof follows by Lemma A.1 presented in the appendix.

The operator Vψ in (2.2) can be extended to an operator on H ′
1,w by

Vψf (h) := 〈
f,U

(
σ(h)−1)ψ 〉

H ′
1,w×H1,w

. (3.2)

Since Oσ is total in H1,w, the operator Vψ is injective. For later use, we define an operator
Ṽψ on L∞, 1

w
by

〈
ṼψF, g

〉
H ′

1,w×H1,w
:= 〈F, Vψg〉 for all g ∈ H1,w . (3.3)

The properties of Vψ and Ṽψ are explained in the following lemma.

Lemma 2.
The operator Vψ defined by (3.2) is a bounded operator from H ′

1,w to L∞, 1
w

. The

operator Ṽψ defined by (3.3) is a bounded operator from L∞, 1
w

toH ′
1,w. The operators Vψ

and Ṽψ satisfy

VψṼψF (h) = 〈F,R(h, ·)〉 (3.4)

for all F ∈ L∞, 1
w

.

Proof. For any f ∈ H ′
1,w, we obtain by (3.1) that

‖Vψf ‖L∞, 1
w

= ∥∥〈
f,U

(
σ(·)−1)ψ 〉

H ′
1,w×H1,w

∥∥
L∞, 1

w

≤ ‖f ‖H ′
1,w

ess sup
h∈X

1

w(σ(h))

∥∥U(
σ(h)−1)ψ∥∥

H1,w

≤ Cψ ‖f ‖H ′
1,w
. (3.5)

Thus, Vψ : H ′
1,w → L∞, 1

w
(X) is a bounded operator.

For F ∈ L∞, 1
w
(X) we have

∥∥ṼψF∥∥
H ′

1,w
= sup

‖g‖H1,w=1

∣∣〈ṼψF, g〉H ′
1,w×H1,w

∣∣ = sup
‖g‖H1,w=1

|〈F, Vψg〉|

≤ sup
‖g‖H1,w=1

‖F‖L∞, 1
w

‖Vψg‖L1,w = ‖F‖L∞, 1
w

.
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Consequently, Ṽψ : L∞, 1
w
(X) → H ′

1,w is a bounded operator. Finally, we obtain for

F ∈ L∞, 1
w
(X) that

VψṼψF (h) = 〈
ṼψF,U

(
σ(h)−1)ψ 〉

H ′
1,w×H1,w

= 〈
F, Vψ

(
U

(
σ(h)−1)ψ)〉

= 〈F,R(h, ·)〉 .
Similar to the definition of coorbit spaces in [3] we define weighted coorbit spaces

by
Mp,w := {

f ∈ H ′
1,w : Vψf ∈ Lp,w(X)

}
,

with 1 ≤ p ≤ ∞ and norm

‖f ‖Mp,w := ‖Vψf ‖Lp,w .
It is straightforward that ‖ · ‖Mp,w defines a seminorm. The property that ‖f ‖Mp,w =
0, i.e., Vψf = 0, implies f = 0 follows by Lemma 1 and since Oσ is total in H.

The weighted coorbit spaces Mp,w are closely related to the subspaces

Mp,w := {
F ∈ Lp,w(X) : 〈F,R(h, ·)〉 = F(h)

}
of Lp,w(X) with 1 ≤ p ≤ ∞. More precisely, the following fundamental correspondence
principle holds true:

Theorem 1.
Let U be a strictly square integrable representation of G mod(P, σ ) and ψ a strictly

admissible function. Assume that the kernel R fulfills (3.1).

(i) For every f ∈ Mp,w, the following equation is satisfied

〈Vψf,R(h, ·)〉 = Vψf (h) ,

i.e., Vψf ∈ Mp,w.

(ii) For every F ∈ Mp,w, 1 ≤ p ≤ ∞, there exists a uniquely determined functional
f ∈ Mp,w such that F = Vψf .

Consequently, the spaces Mp,w and Mp,w, 1 ≤ p ≤ ∞, are isometrically isomorphic.

Proof. (i). Since U(σ(h)−1)ψ ∈ H we have by (2.5) that

Vψf (h) = 〈
f,U

(
σ(h)−1)ψ 〉

H ′
1,w×H1,w

=
〈
f,

∫
X

R(h, l)U
(
σ(l)−1)ψ dµ(l)

〉
H ′

1,w×H1,w

.

For f ∈ H, we obtain by (3.1) that∫
X

|R(h, l)| ∣∣〈f,U(
σ(l)−1)ψ 〉

H
∣∣ dµ(l) ≤ Cψ w(σ(h)) ‖f ‖H ‖ψ‖H .

Thus, by the Fubini theorem, one may change the order of integration. By Lemma 1 this
remains true for f ∈ H ′

1,w. We obtain

Vψf (h) =
∫
X

R(h, l)
〈
f,U

(
σ(l)−1)ψ 〉

H ′
1,w×H1,w

dµ(l)

= 〈Vψf,R(h, ·)〉 .
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(ii). For F ∈ Mp,w, 1 ≤ p ≤ ∞, we have that

‖F‖L∞, 1
w

=
∥∥∥∥∥∥
∫
X

F(l)R(·, l) dµ(l)
∥∥∥∥∥∥
L∞, 1

w

= ess sup
h∈X

∣∣∣∣∣∣
∫
X

F(l)R(h, l) dµ(l)

∣∣∣∣∣∣
1

w(σ(h))
.

By applying the Hölder inequality with 1/p + 1/q = 1 and using w(g) ≥ 1 for all g ∈ G
we further conclude that∣∣∣∣∣∣

∫
X

F(l)R(h, l) dµ(l)

∣∣∣∣∣∣ ≤
∫
X

|F(l)|w(σ(l)) |R(h, l)| dµ(l)

≤

∫
X

|F(l)|p wp(σ(l)) |R(h, l)| dµ(l)



1/p

×

∫
X

|R(h, l)| dµ(l)



1/q

.

Therefore, by (2.4), (3.1), and since w(g) ≥ 1 for all g ∈ G, we obtain

‖F‖L∞, 1
w

≤ C
1/q
ψ ‖ψ‖2/p

H ‖F‖Lp,w .

Thus, F ∈ L∞, 1
w
(X) and by (3.4) we obtain that F = Vψ(ṼψF ), where ṼψF ∈ H ′

1,w and

since F ∈ Lp,w(X) also ṼψF ∈ Mp,w. The uniqueness condition follows by definition of
Mp,w.

In a similar way we can prove a correspondence principle between the spaces M
p, 1

w

and M
p, 1

w
.

Corollary 1.
Let U be a strictly square integrable representation of G mod(P, σ ) and ψ a strictly

admissible function. Assume that the kernel R fulfills (3.1).

(i) For every f ∈ M
p, 1

w
, the following equation is satisfied

〈Vψf,R(h, ·)〉 = Vψf (h) ,

i.e., Vψf ∈ M
p, 1

w
.

(ii) Assume that the kernel R satisfies the additional condition

sup
h,l∈G

|R(h, l)| w(σ(l))
w(σ(h))

≤ Cψ . (3.6)

Then, for every F ∈ M
p, 1

w
, 1 ≤ p ≤ ∞, there exists a uniquely determined

functional f ∈ M
p, 1

w
such that F = Vψf .
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Proof. The proof of part (i) is almost the same as those of Theorem 1.
To show (ii), we conclude by using (3.6) that∣∣∣∣∣∣
∫
X

F(l)R(h, l) dµ(l)

∣∣∣∣∣∣ ≤
∫
X

|F(l)| 1

w(σ(l))
(|R(h, l)|w(σ(l)))1/p+1/q dµ(l)

≤

∫
X

|F(l)|p 1

w (σ(l))p
|R(h, l)|w(σ(l)) dµ(l)




1/p

×

∫
X

|R(h, l)|w(σ(l)) dµ(l)



1/q

≤ Cψ w(σ(h)) ‖F‖L
p, 1
w

.

The rest of the proof can be performed by following the lines of the proof of Theorem 1 (ii).

Applying Corollary 1 (i) and (3.4) we get for f ∈ H ′
1,w that

VψṼψ(Vψf )(h) = 〈Vψf,R(h, ·)〉 = Vψf (h) .

Hence, ṼψVψ is the identity on H ′
1,w and we have the reconstruction formula

f = ṼψVψf =
∫
X

〈
f,U

(
σ(h)−1)ψ 〉

H ′
1,w×H1,w

U
(
σ(h)−1)ψ dµ(h) .

Further we can establish the following relationship:

Corollary 2.
The spaces M∞, 1

w
and H ′

1,w coincide,

M∞, 1
w

= H ′
1,w .

Proof. For f ∈ H ′
1,w we have by (3.5) that ‖Vψf ‖L∞, 1

w

≤ Cψ‖f ‖H ′
1,w

. Conversely,

we have for f ∈ M∞, 1
w

‖f ‖H ′
1,w

= sup
‖g‖H1,w=1

∣∣〈f, g〉H ′
1,w×H1,w

∣∣ = sup
‖g‖H1,w=1

∣∣〈ṼψVψf, g〉H ′
1,w×H1,w

∣∣
= sup

‖g‖H1,w=1
|〈Vψf, Vψg〉| ≤ ‖Vψf ‖L∞, 1

w

.

The next natural question is to which extent the spaces Mp,w are independent of the
choice of the analyzing function and of the section. In the following lemma, we classify
the admissible pairs which give rise to the same coorbit spaces.

Lemma 3.
Let (ψ, σ ) and (η, τ ) be two strictly admissible pairs such that the corresponding

kernels R(ψ,σ) and R(η,τ) satisfy (3.1). Moreover, let us suppose that for some suitable
constant 0 < C < ∞

1

C
w(σ(h)) ≤ w(τ(h)) ≤ Cw(σ(h)) for all h ∈ X . (3.7)
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Let R(h, l) := 〈U(σ(h)−1)ψ,U(τ(l)−1)η〉H fulfill the conditions∫
X

| R(h, l) | w(σ(h))
w(σ(l))

dµ(h) ≤ CR ,
∫
X

| R(h, l) | w(σ(h))
w(σ(l))

dµ(l) ≤ CR , (3.8)

∫
X

| R(h, l) | w(σ(l))
w(σ(h))

dµ(h) ≤ CR ,

∫
X

| R(h, l) | w(σ(l))
w(σ(h))

dµ(l) ≤ CR (3.9)

with a constant 0 < CR < ∞ independent of h and l, respectively. Then the norms
‖f ‖Mp,w,ψ,σ and ‖f ‖Mp,w,η,τ are equivalent.

Proof. By (3.7), the norms ‖ · ‖Lp,w,σ and ‖ · ‖Lp,w,τ are equivalent, so that we drop the
third index as before.

Next, we show that the spaces H1,w,ψ,σ and H1,w,η,τ have equivalent norms, which
implies also the equivalence of the corresponding dual spaces. Let f ∈ H1,w,ψ,σ . By (2.1)
and definition of Vψ and Vη, we have that∫

X

Vψf (h)R(h, l) dµ(h) = Vηf (l)

and consequently,

‖f ‖H1,w,η,τ =
∫
X

|Vηf (l)|w(τ(l)) dµ(l)

≤
∫
X

∫
X

|Vψf (h)||R(h, l)| dµ(h)w(τ(l)) dµ(l)

=
∫
X

|Vψf (h)|w(σ(h))
∫
X

|R(h, l)| w(τ(l))
w(σ(h))

dµ(l) dµ(h) .

Using (3.9) and (3.7), we obtain that

‖f ‖H1,w,η,τ ≤ C ‖Vψf ‖L1,w = C ‖f ‖H1,w,ψ,σ .

By changing the roles of (ψ, σ ) and (η, τ ) and using (3.8) instead of (3.9), we can also
prove the opposite inequality. In the following, we write againH1,w instead ofH1,w,ψ,σ or
H1,w,η,τ .

Now, for F ∈ Lp,w we obtain

VψṼηF (h) = 〈
ṼηF,U

(
σ(h)−1)ψ 〉

H ′
1,w×H1,w

= 〈
F, VηU

(
σ(h)−1)ψ 〉

= 〈F,R(h, ·)〉 .
Therefore, by applying (3.8) and the generalized Young inequality as discussed in the ap-
pendix, we get ∥∥VψṼηF∥∥

Lp,w
≤ C‖F‖Lp,w . (3.10)

Setting F := Vηf with f ∈ Mp,w,η,τ and regarding that ṼηVη is the identity on H ′
1,w, we

conclude from (3.10) that

‖f ‖Mp,w,ψ,σ = ‖Vψf ‖Lp,w ≤ C‖Vηf ‖Lp,w = C‖f ‖Mp,w,η,τ .

By interchanging the roles of ψ and η and using (3.9) the assertion follows.
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4. Atomic Decompositions and Banach Frames for
Weighted Coorbit Spaces

In this section, we derive some atomic decompositions for the weighted coorbit spaces
established above and construct suitable Banach frames. The results are essentially a gen-
eralization of [3]. Consequently, for comparability reasons, our presentation follows the
lines of [3]: Section 4.1 states, after some preparations, our main theorems. These results
are proved by analyzing some suitable approximation operators in Section 4.2 and by ver-
ifying a couple of lemmas concerning frame bounds in Section 4.3. Here we were again
inspired by the pioneering work of Feichtinger and Gröchenig, [10, 11, 12, 13]. Finally, in
Section 4.4, we also briefly discuss atomic decompositions of the dual spaces.

4.1 Setting and Main Results

Before we can state and prove our main results, some preparations are necessary.
Given some compact neighborhood U of the identity in G, a family X = (xi)i∈I in G is
called U-dense if

⋃
i∈I Uxi = G. A family X = (xi)i∈I in G is called relatively separated,

if for some compact neighborhood Q of the identity there exists a finite partition of the
index set I, i.e., I = ⋃r0

r=1 Ir , such that Qxi ∩ Qxj = ∅ for all i, j ∈ Ir with i �= j .
By [11], this is equivalent to the property that for any compact set K ⊂ G there exists a
finite partition of I such that Kxi∩Kxj = ∅ for i, j, i �= j , in the same part of the partition.
Note that these technical conditions can be easily fulfilled by some families X in all the
settings we are interested in.

Let U be an arbitrary neighborhood of the identity in G. By [8], there exists a bounded
uniform partition of unity (of size U), i.e., a family of continuous functions (ϕi)i∈I on G
such that

• 0 ≤ ϕi(g) ≤ 1 for all g ∈ G;

• there is a U-dense, relatively separated family (xi)i∈I in G such that supp ϕi ⊆
Uxi ;

•
∑
i∈I ϕi(g) ≡ 1 for all g ∈ G.

It can be shown that X can always be chosen such that σ(X)∩Uxi �= ∅ implies xi ∈ σ(X),
see [15]. Let

Iσ := {i ∈ I : σ(X) ∩ Uxi �= ∅} .
Then there exist hi ∈ X such that xi = σ(hi), where i ∈ Iσ . Note that∑

i∈Iσ
ϕi(σ (h)) = 1 ,

where h ∈ X.
We define the U-oscillation with respect to the analyzing wavelet ψ as

oscU (l, h) := sup
u∈U

∣∣∣〈ψ,U(
σ(l)σ (h)−1)ψ − U

(
u−1σ(l)σ (h)−1)ψ 〉

H
∣∣∣ .

For later use, let us also remark that

oscU (h, l) = sup
u∈U

∣∣∣〈ψ,U(
σ(l)σ (h)−1)ψ − U

(
σ(l)σ (h)−1u

)
ψ

〉
H

∣∣∣ .
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In this setting, we can formulate our main theorems which we shall prove in the
following subsections. The first one is a decomposition theorem which says that discretiz-
ing the representation U(σ(·)−1) by means of a U-dense set indeed produces an atomic
decomposition of Mp,w.

Theorem 2.
Let G be a locally compact, topological Hausdorff group with closed subgroup P

such that X = G/P carries an invariant measure µ. Let w be a weight function on G.
Further, let U be a strictly square integrable representation of G mod(P, σ ) in H with
strictly admissible function ψ . Assume that the kernel R fulfills (3.1). Let a compact
neighborhood U of the identity in G be chosen such that

∫
X

oscU (l, h)
w(σ(h))

w(σ(l))
dµ(l) ≤ γ and

∫
X

oscU (l, h)
w(σ(h))

w(σ(l))
dµ(h) ≤ γ , (4.1)

where γ < 1. Let X = (xi)i∈I be a U-dense, relatively separated family. Furthermore,
suppose that for some compact neighborhood Q ⊆ U of the identity

µ{h ∈ X : σ(h) ∈ Qσ(hi)} ≥ CQ > 0 (4.2)

holds for all i ∈ Iσ and that

∫
X

sup
q∈Q

∣∣∣〈U(
σ(h)−1)ψ,U(

σ(l)−1q
)
ψ

〉
H

∣∣∣ w(σ(h))

w
(
q−1σ(l)

) dµ(l) ≤ C̃Q (4.3)

with a constant C̃Q < ∞ independent of h ∈ X. Then Mp,w, 1 ≤ p ≤ ∞, has the
following atomic decomposition: if f ∈ Mp,w, 1 ≤ p ≤ ∞, then f can be represented as

f =
∑
i∈Iσ

ciU
(
σ(hi)

−1)ψ ,
where the sequence of coefficients (ci)i∈Iσ = (ci(f ))i∈Iσ ∈ �p,w depends linearly on f
and satisfies ∥∥(ci)i∈Iσ

∥∥
�p,w

≤ A‖f ‖Mp,w . (4.4)

If (ci)i∈Iσ ∈ �p,w, then f = ∑
i∈Iσ ciU(σ (hi)

−1)ψ is contained in Mp,w and

‖f ‖Mp,w ≤ B
∥∥(ci)i∈Iσ

∥∥
�p,w

. (4.5)

Here we use w = (w(xi))i∈Iσ as discretized weight sequence and

�p,w := {
c = (ci)i∈Iσ : ‖c‖�p,w := ‖c w‖�p < ∞}

for 1 ≤ p ≤ ∞.
Given such an atomic decomposition, the problem arises under which conditions

a function f is completely determined by the moments or coefficients 〈f,U(σ(hi)−1)

ψ〉H ′
1,w×H1,w

and how f can be reconstructed from these coefficients. This question is
answered by the following theorem which shows that our generalized coherent states indeed
give rise to Banach frames.
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Theorem 3.
Impose the same assumptions as in Theorem 2 with∫

X

oscU (h, l)
w(σ(h))

w(σ(l))
dµ(l) ≤ γ̃

Cψ
and

∫
X

oscU (h, l)
w(σ(h))

w(σ(l))
dµ(h) ≤ γ̃

Cψ
, (4.6)

where γ̃ < 1, instead of (4.1) and with∫
X

sup
q∈Q

∣∣∣〈U(
σ(h)−1)ψ,U(

σ(l)−1q
)
ψ

〉
H

∣∣∣w
(
q−1σ(l)

)
w(σ(h))

dµ(l) ≤ C̃Q (4.7)

where C̃Q < ∞ is a constant independent of h ∈ X, instead of (4.3). Let R fulfill the
additional property ∫

X

|R(h, l)|w(σ(h))
w(σ(l))

dµ(l) ≤ Cψ . (4.8)

Then the set {
ψi := U

(
σ(hi)

−1)ψ : i ∈ Iσ
}

is a Banach frame for Mp,w. This means that

(i) f ∈ Mp,w if and only if (〈f,ψi〉H ′
1,w×H1,w

)i∈Iσ ∈ �p,w;

(ii) there exist two constants 0 < A′ ≤ B ′ < ∞ such that

A′ ‖f ‖Mp,w ≤ ∥∥(〈f,ψi〉H ′
1,w×H1,w

)
i∈Iσ

∥∥
�p,w

≤ B ′ ‖f ‖Mp,w ; (4.9)

(iii) there exists a bounded, linear reconstruction operator S from �p,w to Mp,w such
that S

(
(〈f,ψi〉H ′

1,w×H1,w
)i∈Iσ

) = f .

For further information concerning Banach frames, we refer to [16].

4.2 Approximation Operators

In this section, we examine two different approximation operators on Mp,w. We use
the results to construct expansions for the spaces Mp,w, which then, by the correspondence
principle in Theorem 1, lead to expansions for the coorbit spaces Mp,w.

We consider the following approximation operators:

TϕF (h) :=
∑
i∈Iσ

〈F, ϕi ◦ σ 〉R(hi, h)

=
∑
i∈Iσ

∫
X

F(l)ϕi(σ (l)) dµ(l)R(hi, h) ,

SϕF (h) :=
∑
i∈Iσ

F (hi)〈ϕi ◦ σ,R(h, ·)〉

=
∑
i∈Iσ

∫
X

F(hi)ϕi(σ (l))R(l, h) dµ(l) .
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So far, it is not clear a prior whether these formal expressions make sense at all and
on which spaces they are bounded operators. This will be clarified in Theorem 4 below.
Another remark is required on the meaning of the sum over Iσ . We order the finite subsets
of Iσ by inclusion, then

∑
i∈Iσ . . . will be understood as the limit of the partial sums over

finite subsets of Iσ .
The first step is to establish the invertibility of the operators Tϕ and Sϕ .

Theorem 4.
(i). If the conditions (4.1) are fulfilled, then the operator Tϕ : Mp,w → Mp,w is

bounded with bounded inverse.
(ii). If the conditions (4.8) and (4.6) are fulfilled, then the operator Sϕ : Mp,w →

Mp,w is bounded with bounded inverse.

Proof. By definition of Mp,w, we have for F ∈ Mp,w that

F(h) = 〈F,R(h, ·)〉 =
∫
X

F(l)R(h, l) dµ(l)

=
∑
i∈Iσ

∫
X

F(l)ϕi(σ (l))R(l, h) dµ(l)

and consequently,

F(h)− TϕF (h) =
∑
i∈Iσ

∫
X

F(l)ϕi(σ (l)) [R(l, h)− R(hi, h)] dµ(l) ,

F (h)− SϕF (h) =
∑
i∈Iσ

∫
X

[F(l)− F(hi)]ϕi(σ (l))R(l, h) dµ(l) . (4.10)

Let us first consider F − TϕF . By the definition of R we obtain

|F(h)− TϕF (h)| ≤
∑
i∈Iσ

∫
X

|F(l)|ϕi(σ (l))|R(l, h)− R(hi, h)| dµ(l)

=
∑
i∈Iσ

∫
X

|F(l)|ϕi(σ (l))

×
∣∣∣〈ψ,U(

σ(l)σ (h)−1)ψ − U
(
σ(hi)σ (h)

−1)ψ 〉
H

∣∣∣ dµ(l) .
Now σ(l) ∈ Uxi implies that there exists u ∈ U such that σ(l) = u xi = u σ(hi). Thus,
σ(hi) = u−1σ(l) and we get

|F(h)−TϕF (h)| ≤
∑
i∈Iσ

∫
X

|F(l)|ϕi(σ (l)) oscU (l, h) dµ(l) =
∫
X

|F(l)| oscU (l, h) dµ(l).

By recalling the assumptions (4.1) and applying the weighted Young inequality (see ap-
pendix), we obtain

‖F − TϕF‖Lp,w = ‖(I − Tϕ)F‖Lp,w ≤ γ ‖F‖Lp,w .
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Consequently, |||I − Tϕ ||| < 1, i.e., I − Tϕ is a contraction on Mp,w. Thus, regarding that
|||Tϕ ||| ≤ |||Tϕ − I ||| + |||I |||, we see that Tϕ is a bounded operator with bounded inverse.

Next we consider F − SϕF . Since F ∈ Mp,w and by the definition of R we obtain

|F(l)− F(hi)| ≤
∫
X

|F(g)||R(g, l)− R(g, hi)| dµ(g)

=
∫
X

|F(g)|
∣∣∣〈ψ,U(

σ(g)σ (l)−1)ψ − U
(
σ(g)σ (hi)

−1)ψ 〉
H

∣∣∣ dµ(g) .
By (4.10) we are only interested in l ∈ X with σ(l) ∈ Uxi , i.e., σ(l) = u σ(hi) for some
u ∈ U and hence, σ(hi)−1 = σ(l)−1u. Thus,

|F(l)− F(hi)| ≤
∫
X

|F(g)| oscU (l, g) dµ(g)

and since (ϕi) is a partition of unity

∑
i∈Iσ

|F(l)− F(hi)|ϕi(σ (l)) ≤
∫
X

|F(g)| oscU (l, g) dµ(g) .

Then we obtain by (3.1), (4.8), (4.10), and the weighted Young inequality

‖F − SϕF‖Lp,w ≤ Cψ

∥∥∥∥∥∥
∑
i∈Iσ

|F(·)− F(hi)|ϕi(σ (·))
∥∥∥∥∥∥
Lp,w

≤ Cψ
γ̃

Cψ
‖F‖Lp,w .

Consequently, I −Sϕ is a contraction on Mp,w and Sϕ is a bounded operator with bounded
inverse on Mp,w.

Using the correspondence principle we can derive the following representation of
functions from our coorbit spaces.

Corollary 3.
Any function f ∈ Mp,w can be decomposed as

f =
∑
i∈Iσ

ci U
(
σ(hi)

−1)ψ , (4.11)

where
ci = ci(f ) := 〈

T −1
ϕ F, ϕi ◦ σ 〉

and F := Vψf .

Proof. By Theorem 1 (i) and Theorem 4 (i) we have that

Vψf (h) = F(h) = TϕT
−1
ϕ F (h) =

∑
i∈Iσ

〈
T −1
ϕ F, ϕi ◦ σ 〉

R(hi, h) .

Since ṼψVψ is the identity on H ′
1,w and Ṽψ is bounded on L∞, 1

w
, we obtain

f = ṼψVψf =
∑
i∈Iσ

〈
T −1
ϕ F, ϕi ◦ σ 〉

Ṽψ(R(hi, ·)) . (4.12)
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Now, for any g ∈ H1,w,〈
Ṽψ(R(hi, ·)), g

〉
H ′

1,w×H1,w
= 〈R(hi, ·), Vψg〉 = Vψg(hi)

= 〈
U

(
σ(hi)

−1)ψ, g〉
H ′

1,w×H1,w

so that Ṽψ(R(hi, ·)) =U(σ(hi)−1)ψ . Together with (4.12) this yields the assertion.

Moreover, the operator Sϕ induces the reconstruction operator as stated in Theo-
rem 3 (iii).

Corollary 4.
Any function f ∈ Mp,w can be reconstructed as

f =
∑
i∈Iσ

〈
f,U

(
σ(hi)

−1ψ
〉
H ′

1,w×H1,w
ei ,

where
ei = Ṽψ(Ei), Ei(h) := S−1

ϕ (〈ϕi ◦ σ,R(h, ·)〉) .
Proof. Since Sϕ has a continuous inverse, we obtain for F := Vψf ∈ Mp,w that

F(h) = S−1
ϕ Sϕ F (h)

=
∑
i∈Iσ

F (hi)S
−1
ϕ 〈ϕi ◦ σ,R(h, ·)〉 =

∑
i∈Iσ

F (hi)Ei(h) .

Now the correspondence principle and the continuity of Ṽψ on L∞, 1
w

implies

f = ṼψVψf = Ṽψ

( ∑
i∈Iσ

Vψ(f )(hi)Ei

)

=
∑
i∈Iσ

〈
f,U

(
σ(hi)

−1ψ
〉
H ′

1,w×H1,w
Ṽψ(Ei) =

∑
i∈Iσ

〈
f,U

(
σ(hi)

−1ψ
〉
H ′

1,w×H1,w
ei .

4.3 Frame Bounds

In this section, we prove the norm equivalences in Theorems 2 and 3. For the verifica-
tion that the infinite sums appearing in the following lemmatas converge (unconditionally)
in Mp,w, respectively Mp,w, it suffices to obtain for p < ∞ the estimates for finite se-
quences. Then all the estimates can be extended in the usual way, see again [10, 11, 12] for
details. Only the case p = ∞ requires some additional effort. The necessary modifications
are left to the reader.

In the following, ‘C’ always denotes a generic constant which is independent of all
the other parameters under consideration, but whose concrete value may be different in each
particular estimate.

We start with Theorem 2, relation (4.4).

Lemma 4.
Suppose that the conditions in Theorem 2 are satisfied. For any f ∈ Mp,w let

(ci)i∈Iσ := (〈
T −1
ϕ Vψf, ϕi ◦ σ 〉)

i∈Iσ .
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Then there exists a constant A < ∞ such that the following inequality holds:∥∥(ci)i∈Iσ
∥∥
�p,w

≤ A‖f ‖Mp,w .

In particular, we have that (ci)i∈Iσ ∈ �p,w.

Proof. 1. First of all, we show that for any sequence (ηi)i∈Iσ the inequality

∥∥(ηi)i∈Iσ
∥∥
�p,w

≤ C

∥∥∥∥∥∥
∑
i∈Iσ

|ηi |1Uxi ◦ σ
∥∥∥∥∥∥
Lp,w

(4.13)

holds, where again xi = σ(hi) and where 1Uxi denotes the characteristic function of Uxi .
Since (xi)i∈I is a relatively separated family, there exists a splitting I = ⋃r0

r=1 Ir
such that Uxi ∩ Uxj = ∅ for i, j ∈ Ir and i �= j . This results in a decomposition
Iσ = ⋃r0

r=1 Iσr , where

Iσr = {i ∈ Ir : Uxi ∩ σ(X) �= ∅} .
Then we obtain∥∥∥∥∥∥

∑
i∈Iσ

|ηi |1Uxi ◦ σ
∥∥∥∥∥∥
p

Lp,w

=
∫
X


 r0∑
r=1

∑
i∈Iσr

|ηi |1Uxi (σ (h))w(σ(h))



p

dµ(h)

≥
r0∑
r=1

∫
X


 ∑
i∈Iσr

|ηi |1Uxi (σ (h))w(σ(h))



p

dµ(h)

=
r0∑
r=1

∫
X

∑
i∈Iσr

|ηi |p1Uxi (σ (h))w
p(σ (h)) dµ(h) .

Moreover, since w(xi) ≤ w(u−1)w(σ(h)) for σ(h) ∈ Uxi and Q ⊂ U , we can conclude
from (4.2) that∥∥∥∥∥∥

∑
i∈Iσ

|ηi |1Uxi ◦ σ
∥∥∥∥∥∥
p

Lp,w

≥
(

max
u∈U

w
(
u−1))−p

CQ
∑
i∈Iσ

|ηi |p wp(xi)

which implies (4.13) by continuity of w and since U is compact.
2. Let F ∈ Lp,w. Then the application of (4.13) yields∥∥(〈F, ϕi ◦ σ 〉)i∈Iσ

∥∥
�p,w

≤ ∥∥(〈|F |, ϕi ◦ σ 〉)i∈Iσ
∥∥
�p,w

≤ C

∥∥∥∥∥∥
∑
i∈Iσ

〈|F |, ϕi ◦ σ 〉1Uxi ◦ σ
∥∥∥∥∥∥
Lp,w

.

Further, we see for an arbitrary fixed h ∈ X that∑
i∈Iσ

〈|F |, ϕi ◦ σ 〉1Uxi (σ (h)) =
∑
i∈Ih

〈|F |, ϕi ◦ σ 〉 ,
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where Ih := {i ∈ Iσ : σ(h) ∈ Uxi}. Since (xi)i∈I is a relatively separated family, we see,
by using the notation in the first part of the proof, that #Ih ≤ r0 and consequently,∑

i∈Ih
〈|F |, ϕi ◦ σ 〉 ≤ 〈|F |,K(h, ·)〉

with
K(h, l) :=

∑
i∈Ih

1Uxi (σ (l)) =
∑
i∈Il

1Uxi (σ (h)) .

We may assume that there exists some constant C such that µ(�(U)) ≤ C. For x ∈ G, we
have by the G-invariance of µ and since �(U)x = �(Ux) that

µ(�(Ux)) = µ(�(U)x) = µ(�(U)) ≤ C .

Now {l ∈ X : σ(l) ∈ Ux} ⊆ �(Ux) so that

µ({l ∈ X : σ(l) ∈ Ux}) ≤ µ(�(Ux)) ≤ C . (4.14)

Further, σ(h) ∈ Uxi and σ(l) ∈ Uxi imply that σ(h) = u2u
−1
1 σ(l) for some u1, u2 ∈ U

and consequently, by the submultiplicativity of our weight function

w(σ(h)) = w
(
u2u

−1
1 σ(l)

) ≤ w
(
u2u

−1
1

)
w(σ(l)) .

Since UU−1 is compact and w is continuous, we obtain that w(σ(h))/w(σ(l)) ≤ Cw with
a constant Cw independent of h and l. Together with (4.14) we conclude that

∫
X

K(h, l)
w(σ(h))

w(σ(l))
dµ(l) ≤ Cw C r0

for all h ∈ X and similarly for the integration with respect to dµ(h) for all l ∈ X. Therefore
the weighted Young inequality implies that∥∥(〈F, ϕi ◦ σ 〉)i∈Iσ

∥∥
�p,w

≤ C ‖〈|F |,K(h, ·)〉‖Lp,w ≤ C ‖F‖Lp,w .

3. Finally, we conclude by the correspondence principle and by using F = T −1
ϕ Vψf ∈

Mp,w in the above inequality that∥∥(〈
T −1
ϕ Vψf, ϕi ◦ σ 〉)

i∈Iσ
∥∥
�p,w

≤ C
∥∥T −1

ϕ Vψf
∥∥
Lp,w

≤ C
∣∣∣∣∣∣T −1

ϕ

∣∣∣∣∣∣ ‖Vψf ‖Lp,w
≤ C

∣∣∣∣∣∣T −1
ϕ

∣∣∣∣∣∣ ‖f ‖Mp,w .

The next step is to establish (4.5).

Lemma 5.
Suppose that the conditions in Theorem 2 are satisfied. Then there exists a constant

B < ∞ such that for any sequence (ci)i∈Iσ ∈ �p,w, 1 ≤ p ≤ ∞, the following inequality
holds: ∥∥∥∥∥∥

∑
i∈Iσ

ciU
(
σ(hi)

−1)ψ
∥∥∥∥∥∥
Mp,w

≤ B
∥∥(ci)i∈Iσ

∥∥
�p,w

.
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Proof. 1. First we prove that∥∥∥∥∥∥
∑
i∈Iσ

ciR(hi, h)

∥∥∥∥∥∥
Lp,w

≤ B
∥∥(ci)i∈Iσ ∥∥�p,w .

To this end, we want to use the weighted Riesz–Thorin Interpolation Theorem as outlined
in the appendix. That is, we show that

T : (ci)i∈Iσ 	−→
∑
i∈Iσ

ciR(hi, ·)

is a bounded operator from �1,w to L1,w and from �∞,w to L∞,w. Then the Riesz–Thorin
Theorem implies that T is also a bounded operator from �p,w to Lp,w for all 1 ≤ p ≤ ∞.

For p = 1, we obtain by (3.1) that∥∥∥∥∥∥
∑
i∈Iσ

ciR(hi, ·)
∥∥∥∥∥∥
L1,w

≤
∫
X

∑
i∈Iσ

|ci | |R(hi, h)|w(σ(h)) dµ(h)

≤
∑
i∈Iσ

|ci |
∫
X

|R(hi, h)|w(σ(h)) dµ(h)

≤
∑
i∈Iσ

|ci |Cψw(σ(hi)) = Cψ
∥∥(ci)i∈Iσ

∥∥
�1,w

.

For p = ∞ it follows that∥∥∥∥∥∥
∑
i∈Iσ

ciR(hi, ·)
∥∥∥∥∥∥
L∞,w

= sup
h∈X

∣∣∣∣∣∣
∑
i∈Iσ

ciR(hi, h)w(σ(h))

∣∣∣∣∣∣
≤ sup

i∈Iσ
|ci |w(σ(hi)) sup

h∈X

∑
i∈Iσ

|R(hi, h)| w(σ(h))
w(σ(hi))

= ∥∥(ci)i∈Iσ ∥∥�∞,w
sup
h∈X

∑
i∈Iσ

|R(hi, h)| w(σ(h))
w(σ(hi))

. (4.15)

Let Q be some compact neighborhood of the identity which satisfies (4.2) and (4.3). Since
(xi)i∈I is a relatively separated family there exists a finite splitting Iσ = ⋃r0

r=1 Iσr so that
Qxi ∩ Qxj = ∅ for i, j ∈ Iσr and i �= j . Hence, we obtain

∑
i∈Iσ

|R(hi, h)| w(σ(h))
w(σ(hi))

=
r0∑
r=1

∑
i∈Iσr

|R(hi, h)| w(σ(h))
w(σ(hi))

.

For all l ∈ X with the property that σ(l) ∈ Qσ(hi), we have that σ(hi)−1 ∈ σ(l)−1Q and
hence,

|R(hi, h)| w(σ(h))
w(σ(hi))

=
∣∣∣〈U(

σ(h)−1)ψ,U(
σ(hi)

−1)ψ 〉
H

∣∣∣ w(σ(h))
w(σ(hi))

≤ sup
q∈Q

∣∣∣〈U(
σ(h)−1)ψ,U(

σ(l)−1q
)
ψ

〉
H

∣∣∣ w(σ(h))

w
(
q−1σ(l)

) .



OF20 Stephan Dahlke, Gabriele Steidl, and Gerd Teschke

Let Bi := {l ∈ X : σ(l) ∈ Qσ(hi)}. Then the above inequality implies

∫
Bi

sup
q∈Q

∣∣∣〈U(
σ(h)−1)

ψ,U
(
σ(l)−1q

)
ψ

〉
H

∣∣∣ w(σ(h))

w
(
q−1σ(l)

) dµ(l) ≥ |R(hi, h)| w(σ(h))
w(σ(hi))

µ(Bi ).

Now we have that the sets Bi and Bj are disjoint for i, j ∈ Iσr and i �= j . Consequently,
we obtain by (4.3) and (4.2)

C̃Q ≥
∫
X

sup
q∈Q

∣∣∣〈U(
σ(h)−1)ψ,U(

σ(l)−1q
)
ψ

〉
H

∣∣∣ w(σ(h))

w
(
q−1σ(l)

) dµ(l)
≥

∑
i∈Iσr

∫
Bi

sup
q∈Q

∣∣∣〈U(
σ(h)−1)ψ,U(

σ(l)−1q
)
ψ

〉
H

∣∣∣ w(σ(h))

w
(
q−1σ(l)

) dµ(l)
≥

∑
i∈Iσr

|R(hi, h)| w(σ(h))
w(σ(hi))

µ(Bi )

≥ CQ
∑
i∈Iσr

|R(hi, h)| w(σ(h))
w(σ(hi))

and hence,

∑
i∈Iσr

|R(hi, h)| w(σ(h))
w(σ(hi))

≤ C̃Q
CQ

,
∑
i∈Iσ

|R(hi, h)| w(σ(h))
w(σ(hi))

≤ r0C̃Q
CQ

. (4.16)

Together with (4.15) this yields∥∥∥∥∥∥
∑
i∈Iσ

ciR(hi, ·)
∥∥∥∥∥∥
L∞,w

≤ ∥∥(ci)i∈Iσ
∥∥
�∞,w

r0C̃Q
CQ

.

2. Now it is easy to check that
∑
i∈Iσ ciR(hi, h) ∈ Mp,w. Since VψṼψ is the identity on

L∞, 1
w

and ṼψVψ on H ′
1,w, we obtain

∑
i∈Iσ

ciR(hi, h) = VψṼψ


∑
i∈Iσ

ciVψ
(
U

(
σ(hi)

−1)ψ)
(h)




= Vψ


∑
i∈Iσ

ciU
(
σ(hi)

−1)ψ

 (h) .

Thus, ∥∥∥∥∥∥
∑
i∈Iσ

ciU
(
σ(hi)

−1)ψ
∥∥∥∥∥∥
Mp,w

=
∥∥∥∥∥∥
∑
i∈Iσ

ciR(hi, ·)
∥∥∥∥∥∥
Lp,w

and we are done.

Next let us turn to the estimates (4.9) in Theorem 3.
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Lemma 6.
Suppose that the conditions in Theorem 3 are satisfied. For i ∈ Iσ , let ψi :=

U(σ(hi)
−1)ψ . Then, for f ∈ Mp,w, there exists a constant B ′ < ∞ such that∥∥(〈

f,ψi
〉
H ′

1,w×H1,w

)
i∈Iσ

∥∥
�p,w

≤ B ′‖f ‖Mp,w .

Proof. Let F := Vψf . By the correspondence principle the assertion is equivalent to∥∥(F (hi))i∈Iσ ∥∥�p,w ≤ B ′‖F‖Lp,w . (4.17)

We prove (4.17) for p = 1 and p = ∞ and apply again the weighted Riesz–Thorin
Interpolation Theorem to obtain the inequality for all 1 ≤ p ≤ ∞.

For p = 1, we conclude as follows∑
i∈Iσ

|F(hi)|w(σ(hi)) =
∑
i∈Iσ

|〈F,R(hi, ·)〉|w(σ(hi))

≤
∑
i∈Iσ

∫
X

|F(l)||R(hi, l)|w(σ(hi)) dµ(l)

=
∫
X

|F(l)|w(σ(l))
∑
i∈Iσ

|R(hi, l)|w(σ(hi))
w(σ(l))

dµ(l)

≤ ‖F‖L1,w sup
l∈X

∑
i∈Iσ

|R(hi, l)|w(σ(hi))
w(σ(l))

.

Using (4.7) we obtain as in (4.16) that
∑
i∈Iσ |R(hi, l)|w(σ(hi ))w(σ(l))

≤ r0C̃Q/CQ and conse-
quently, ∑

i∈Iσ
|F(hi)|w(σ(hi)) ≤ r0C̃Q

CQ
‖F‖L1,w .

For p = ∞, we get

sup
i∈Iσ

|F(hi)|w(σ(hi)) = sup
i∈Iσ

|〈F,R(hi, ·)〉|w(σ(hi))

≤ sup
i∈Iσ

∫
X

|F(l)||R(hi, l)|w(σ(hi)) dµ(l)

≤ sup
l∈X

|F(l)|w(σ(l)) sup
i∈Iσ

∫
X

|R(hi, l)|w(σ(hi))
w(σ(l))

dµ(l)

≤ Cψ ‖F‖L∞,w ,

where we have used (4.8) for the last estimate. This finishes the proof.

Lemma 7.
Suppose that the conditions in Theorem 3 are satisfied. For i ∈ Iσ , let ψi :=

U(σ(hi)
−1)ψ . Then, for

(〈f,ψi〉H ′
1,w×H1,w

)
i∈Iσ ∈ �p,w, there exists a constant A′ > 0

such that

‖f ‖Mp,w ≤ 1

A′
∥∥(〈f,ψi〉H ′

1,w×H1,w

)
i∈Iσ

∥∥
�p,w

.
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Proof. 1. First we show that

T̃ : (ci)i∈Iσ 	→
〈∑
i∈Iσ

ciϕi ◦ σ,R(h, ·)
〉

is a bounded operator from �p,w to Mp,w. Again by the Riesz–Thorin Theorem, if suffices
to show the boundedness for p = 1 and p = ∞.

For p = 1, we get by (3.1), (4.8), and the weighted Young inequality∥∥∥∥∥∥
〈∑
i∈Iσ

ci (ϕi ◦ σ)(h), R(h, ·)
〉∥∥∥∥∥∥

L1,w

≤ Cψ

∥∥∥∥∥∥
∑
i∈Iσ

ci ϕi(σ (·))
∥∥∥∥∥∥
L1,w

≤ Cψ

∫
X

∑
i∈Iσ

|ci |w(σ(hi)) ϕi(σ (h)) w(σ(h))
w(σ(hi))

dµ(h)

≤ Cψ
∥∥(ci)i∈Iσ ∥∥�1,w

sup
i∈Iσ

∫
X

|ϕi(σ (h))| w(σ(h))
w(σ(hi))

dµ(h) . (4.18)

By supp ϕi ⊆ Uσ(hi) we consider h ∈ X with σ(h) = uσ(hi). Then, by using similar
arguments as in the proof of Lemma 4, we obtain

w(σ(h))

w(σ(hi))
≤ C (4.19)

with a constant C independent of hi and h. Hence, since µ is an invariant measure, we can
estimate (4.18) by∥∥∥∥∥∥

〈∑
i∈Iσ

ci ϕi ◦ σ,R(h, ·)
〉∥∥∥∥∥∥

L1,w

≤ Cψ C
∥∥(ci)i∈Iσ ∥∥�1,w

.

For p = ∞, we obtain in a similar way by using the weighted Young inequality∥∥∥∥∥∥
〈∑
i∈Iσ

ci ϕi ◦ σ,R(h, ·)
〉∥∥∥∥∥∥

L∞,w

≤ Cψ sup
h∈X

∣∣∣∣∣∣
∑
i∈Iσ

ci ϕi(σ (h))

∣∣∣∣∣∣ w(σ(h))
≤ Cψ sup

i∈Iσ
|ci |w(σ(hi)) sup

h∈X

∑
i∈Iσ

ϕi(σ (h))
w(σ(h))

w(σ(hi))
,

and further by (4.19) and since {ϕi} is a partition of unity that∥∥∥∥∥∥
〈∑
i∈Iσ

ciϕi ◦ σ,R(h, ·)
〉∥∥∥∥∥∥

L∞,w

≤ Cψ C
∥∥(ci)i∈Iσ ∥∥�∞,w

.

2. Next it is easy to check that〈∑
i∈Iσ

ciϕi ◦ σ,R(h, ·)
〉

=
∑
i∈Iσ

ci〈ϕi ◦ σ,R(h, ·)〉 .
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Since S−1
ϕ is a bounded operator on Mp,w, we conclude that

(ci)i∈Iσ 	→ S−1
ϕ


∑
i∈Iσ

ci〈ϕi ◦ σ,R(h, ·)〉

 =

∑
i∈Iσ

ciS
−1
ϕ (〈ϕi ◦ σ,R(h, ·)〉)

is also bounded from �p,w to Mp,w.

3. Finally, we apply part 1 and 2 of the proof to the special sequence
(〈f,ψi〉H ′

1,w×H1,w

)
i∈Iσ

= (
F(hi)

)
i∈Iσ , where F := Vψf , and obtain

∥∥∥∥∥∥
∑
i∈Iσ

〈f,ψi〉H ′
1,w×H1,w

S−1
ϕ (〈ϕi ◦ σ,R(h, ·)〉)

∥∥∥∥∥∥
Lp,w

≤ C
∥∥(〈f,ψi〉H ′

1,w×H1,w

)
i∈Iσ

∥∥
�p,w

and together with Corollary 4 and the correspondence principle

‖f ‖Mp,w ≤ C
∥∥(〈f,ψi〉H ′

1,w×H1,w

)
i∈Iσ

∥∥
�p,w

.

4.4 The Dual Spaces

The general coorbit space theory outlined above can also be used to derive atomic
decompositions of the dual spaces M ′

p,w associated with Mp,w. Let us start with the
following observation.

Theorem 5.
Let U be a strictly square integrable representation of G mod(P, σ ) and ψ a strictly

admissible function. Then

M ′
p,w = Mq,1/w for 1 < p < ∞, 1/p + 1/q = 1 .

Proof. The proof can be performed by following the lines of the proof of Theorem 4.9
in [11] and using the fact that for 1 < p < ∞ the space Lp,w(X) is a reflexive Banach
space.

By Theorem 5, atomic decompositions and Banach frames forM ′
p,w can be obtained

by generalizing Theorem 2 and Theorem 3 to weighted spaces associated with 1/w. For-
tunately, the whole theory carries over without any essential difficulty.

Theorem 6.
LetU be a strictly square integrable representation of G mod(P, σ ) in H with strictly

admissible function ψ . Let a compact neighborhood U of the identity in G be chosen such
that (4.1) is satisfied withw replaced by 1/w. Let X = (xi)i∈I be a U-dense and relatively
separated family. Furthermore, suppose that condition (3.6) is satisfied and that for some
compact neighborhood Q ⊆ U of the identity in G (4.2) holds for all i ∈ Iσ . Finally, let us
assume that our analyzing function ψ fulfills the following inequality

∫
X

sup
q∈Q

∣∣∣〈U(
σ(h)−1)ψ,U(

σ(l)−1q
)
ψ

〉
H

∣∣∣w
(
q−1σ(l)

)
w(σ(h))

dµ(l) ≤ C̃Q
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with a constant C̃Q < ∞ independent of h ∈ X. Then M
p, 1

w
, 1 ≤ p ≤ ∞, has the

following atomic decomposition: if f ∈ M
p, 1

w
, 1 ≤ p ≤ ∞, then f can be represented as

f =
∑
i∈Iσ

ciU
(
σ(hi)

−1)ψ ,
where the sequence of coefficients (ci)i∈Iσ = (ci(f ))i∈Iσ ∈ �

p, 1
w

depends linearly on f

and satisfies ∥∥(ci)i∈Iσ ∥∥�
p, 1
w

≤ A‖f ‖M
p, 1
w

.

If (ci)i∈Iσ ∈ �
p, 1

w
, then f = ∑

i∈Iσ ciU(σ (hi)
−1)ψ is contained in M

p, 1
w

and

‖f ‖M
p, 1
w

≤ B
∥∥(ci)i∈Iσ ∥∥�

p, 1
w

.

Theorem 7.
Impose the same assumptions as in Theorem 3 but with

∫
X

sup
q∈Q

∣∣∣〈U(
σ(h)−1)ψ,U(

σ(l)−1q
)
ψ

〉
H

∣∣∣ w(σ(h))

w
(
q−1σ(l)

) dµ(l) ≤ C̃Q

where C̃Q < ∞ is a constant independent of h ∈ X, instead of (4.7) and with w replaced
by 1/w in (4.6). Moreover, let us assume that (3.6) is satisfied. Then the set{

ψi := U
(
σ(hi)

−1)ψ : i ∈ Iσ
}

is a Banach frame for M
p, 1

w
. This means that

(i) f ∈ M
p, 1

w
if and only if (〈f,ψi〉H ′

1,w×H1,w
)i∈Iσ ∈ �

p, 1
w

;

(ii) there exist two constants 0 < A′ ≤ B ′ < ∞ such that

A′ ‖f ‖M
p, 1
w

≤ ∥∥(〈f,ψi〉H ′
1,w×H1,w

)
i∈Iσ

∥∥
�
p, 1
w

≤ B ′ ‖f ‖M
p, 1
w

;

(iii) there exists a bounded, linear reconstruction operator S from �
p, 1

w
toM

p, 1
w

such

that S
(
(〈f,ψi〉H ′

1,w×H1,w
)i∈Iσ

) = f .

5. Application to the Sphere

In this section, we want to fill our technical considerations developed in the previous
sections with live by giving an example. Following the lines of [3], we derive a generalized
windowed Fourier transform on the spheres Sn−1 and check that the proposed construction
of modulation spaces and Banach frames works well for this setting. We start by establishing
a suitable group representation for the Hilbert space H = L2(S

n−1). Having the usual
windowed Fourier transform generated by translations and modulations in mind, Torresani
suggested in [18] to choose the Euclidean group

G := E(n) = SO(n)� R
n ,
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i.e., the semidirect product of the special orthogonal group SO(n) and R
n with group

operation

(R, p) ◦ (
R̃, p̃

) = (
RR̃,Rp̃ + p

)
, (R, p)−1 = (

R−1,−R−1p
)
.

As a natural analogue to the Schrödinger representation of the Weyl–Heisenberg group on
L2(R

n), we can define the continuous unitary representation U of G on H

U(R, p)f (s) := ei<s,p>f
(
R−1s

)
,

where s ∈ Sn−1. Since this representation is not square integrable, we are looking for
suitable representations modulo a subgroup P of G.

In order to keep the notation simple, we restrict ourselves to the case H = L2(S
1) ∼=

L2([−π, π ]). In this setting, R ∈ SO(2) and s ∈ S1 are given explicitly by

R =
(

cos θ sin θ
− sin θ cos θ

)
, s =

(
sin γ
cos γ

)

and the representation U acts as

U(θ, p1, p2)ψ(γ ) = ei(p1 sin γ+p2 cos γ )ψ(γ − θ) .

To overcome the integrability problem, we use the subgroup P ∼= {(0, 0, p2) ∈ G} together
with the flat section σ(θ, p1) = (θ, p1, 0). Then the following lemma proved in [18]
ensures strictly square integrability of U mod (P, σ ).

Lemma 8.
Assume that the function ψ ∈ L2([−π, π ]) is such that supp ψ ⊂ [−π/2, π/2] and

2π

π/2∫
−π/2

|ψ(γ )|2
cos γ

dγ = 1 .

Then the map Vψ defined by (2.2) is an isometry.

In the following, we choose the admissible function

ψ(x) = cos6 x · χ[−π/2,π/2](x) .

In order to construct properly defined modulation spaces we have to establish the funda-
mental property (3.1) of our kernel R. Moreover, for the construction of Banach frames in
our weighted coorbit spacesMp,w, we have to verify the related property (4.8). It has been
shown in [3] that the kernel R can be rewritten as

R(l, h) = F̂θ,pl (−ph) ,
where h = (θh, ph, 0), l = (θl, pl, 0) ∈ X, θ = θh − θl and

Fθ,pl (t) := e−ipl sin(arcsin t−θ)ψ(arcsin t − θ)ψ(arcsin t)/
√

1 − t2 .

The plots of |R(h, l)| = |F̂θ,pl (−ph)| for two values of θ in Figure 1 describe the typical
decay behavior of R.
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FIGURE 1 Left: |F̂θ,pl (−ph)| for θ = −2.642, right: |F̂θ,pl (−ph)| for θ = 1.758.

In analogy to the classical modulation spaces on the Euclidean plane, we consider
specific weight functions of the form w(R, p) = (1 + ‖p‖)s , i.e., the modulation spaces
are generalized Bessel-potential spaces. Since the invariant measure dµ(h) of X is given
by dph dθh, we obtain that

∫
X

|R(h, l)|w(σ(h))
w(σ(l))

dµ(h) =
π∫

−π

∫
R

∣∣F̂θ,pl (ph)∣∣ (1 + |ph|)s
(1 + |pl |)s dph dθh .

Regarding that the outer integration is over a finite interval, we see that property (3.1) is
equivalent to

∫
R

∣∣F̂θ,pl (ph)∣∣ (1 + |ph|)s
(1 + |pl |)s dph < C , (5.1)

with some constant C independent of pl and θ . Similarly, we conclude that property (4.8)
is equivalent to ∫

R

∣∣F̂θ,pl (ph)∣∣ (1 + |ph|)s
(1 + |pl |)s dpl ≤ C (5.2)

with some constantC independent ofph and θ . These properties are confirmed numerically
and the results are presented in the Figures 2–4 for s = 0.5. Figure 2 shows the approximated
values of

∫
R

|F̂θ,pl (ph)|(1 + |ph|)0.5/(1 + |pl |)0.5 dph as functions of pl and Figure 3 the

approximated values of
∫

R
|F̂θ,pl (ph)|(1 + |ph|)0.5/(1 + |pl |)0.5 dpl as functions of ph.

Finally, in Figure 4, we have displayed maxpl
∫ |F̂θ,pl (ph)(1 + |ph|)0.5/(1 + |pl |)0.5 dph

and maxph
∫ |F̂θ,pl (ph)(1 + |ph|)0.5/(1 + |pl |)0.5 dpl for all θ ∈ [−π, π ]. These results

clearly show that conditions (5.1) and (5.2) are satisfied.
For the construction of Banach frames in Mp,w we choose the neighborhood U :=

[−π/N, π/N ] × [−π/M,π/M] × [−π/M,π/M] of the identity and a U-dense set X :=
(xn,m)(n,m)∈I with xn,m = (θn, pm, qm). Then the assumptions concerning oscU in Theo-
rem 2 and Theorem 3, respectively, can be verified directly by slightly modifying the steps
in [3] with respect to the additional weight function. Finally, note that property (4.2) has
already been proved in [3] for a suitable set Q.
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FIGURE 2
∫
R

|F̂θ,pl (ph)|(1 + |ph|)0.5/(1 + |pl |)0.5 dph, left: θ = −2.642, right: θ = 1.758.

FIGURE 3
∫
R

|F̂θ,pl (ph)|(1 + |ph|)0.5/(1 + |pl |)0.5 dpl, left: θ = −2.642, right: θ = 1.758.

FIGURE 4 Maximum plot for all θ ∈ [−π, π ]; left: maxpl
∫
R

|F̂θ,pl (ph)|(1 + |ph|)0.5/(1 + |pl |)0.5 dph,

right: maxph
∫
R

|F̂θ,pl (ph)|(1 + |ph|)0.5/(1 + |pl |)0.5 dpl .
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A. Appendix

In this section, we want to collect some basic facts that were needed before.

Lemma A.1.
Let D be a reflexive Banach space, E a normed space and T : D → E a linear,

injective, bounded mapping with dense image in E. Then T ′ : E′ → D′ defined by
T ′(f ) = f ◦ T , f ∈ E′ is a linear, injective, bounded mapping with dense image in D′.

Proof. The operator T ′ is injective because T ′(e′1) = T ′(e′2) for some e′1, e′2 ∈ E′
means by definition of T ′ that e′1(T d) = e′2(T d) for all d ∈ D. By the density of T (D) in
E this implies that e′1 = e′2.

The operator T ′ has a dense image in D′ by the following argument: assume that
T ′(E′) is not dense inD′. Then, by the Hahn–Banach Theorem, there exists u ∈ D′′, u �= 0
such that u(F ) = 0 for all F ∈ T ′(E′). Since D is reflexive, there exists d ∈ D such that

u(F ) = F(d) for all F ∈ D′ . (A.1)

Consequently, we obtain for all e′ ∈ E′ that e′(T (d)) = u(e′ ◦ T ) = u(T ′(e′)) = 0. Thus,
T (d) = 0 which implies by injectivity of T that d = 0. But, by (A.1), this implies the
contradiction u = 0.

Finally, the continuity of T ′ follows by

∥∥T ′(e′)∥∥
D′ = sup

d∈D

∣∣T ′(e′)(d)∣∣
‖d‖D = sup

d∈D

∣∣(e′ ◦ T )
(d)

∣∣
‖d‖D

and since ‖T (d)‖E ≤ ‖T ‖D→E‖d‖D for all d ∈ D and T (D) is dense in E

∥∥T ′ (e′)∥∥
D′ ≤ ‖T ‖D→E sup

x∈T (D)

∣∣e′(x)∣∣
‖x‖E = ‖T ‖D→E

∥∥e′∥∥
E′ .

Next, we extend the classical Young inequality, see, e.g., [14], p. 185, Theorem 6.18,
to weighted Lp-spaces.

Theorem A.1 (Weighted Young Inequality).
Let (Z,A, η) and (Y,B, ζ ) be σ -finite measure spaces, letK be an A⊗B-measurable

function on Z × Y , and let w be a positive weight function. Suppose that K satisfies the
following conditions ∫

Z

|K(x, y)|w(x)
w(y)

dη(x) ≤ CK

for a.e. y ∈ Y and ∫
Y

|K(x, y)|w(x)
w(y)

dζ(y) ≤ CK

for a.e. x ∈ Z. If f ∈ Lp,w, 1 ≤ p ≤ ∞, then the integral

Tf (x) =
∫
Y

K(x, y)f (y) dζ(y)

converges absolutely for a.e. x ∈ Z, the function Tf thus defined is in Lp,w and

‖Tf ‖Lp,w ≤ CK‖f ‖Lp,w .
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For reader’s convenience, we include a complete proof here. However, let us remark
that the result can also be derived by applying the classical Young inequality as outlined in
Folland [14] to suitable weighted functions and kernels.

Proof. To show that the operatorT is bounded we apply the assumptions of Theorem A.1
and the Hölder inequality with 1/p + 1/q = 1 as follows:

‖Tf ‖pLp,w =
∫ ∣∣∣∣

∫
K(x, y)f (y) dζ(y)

∣∣∣∣
p

wp(x) dη(x)

≤
∫ (∫

|K(x, y)| 1

w(y)1/p+1/q
|f (y)|w(y) dζ(y)

)p
wp(x) dη(x)

≤
∫ (∫

|K(x, y)| 1

w(y)
|f (y)|p wp(y) dζ(y)

)(∫
|K(x, y)| 1

w(y)
dζ(y)

)p/q
× wp(x) dη(x)

≤ C
p/q
K

∫ ∫
|K(x, y)| 1

w(y)
|f (y)|p wp(y) dζ(y)w(x)p−p/q dη(x)

= C
p/q
K

∫
|f (y)|p wp(y)

∫
|K(x, y)|w(x)

w(y)
dη(x) dζ(y)

≤ C
p
K‖f ‖pLp,w .

B. Appendix

In order to establish the frame bounds, we need a variant of the Riesz–Thorin inter-
polation theorem for the case of weighted Lp-spaces. For p0, p1 < ∞, the desired result
is essentially a special case of the Stein–Weiss interpolation theorem, see, e.g., [2], Corol-
lary 5.5.4, for details. However, for our approach we definitely need the corresponding
result for p0 = 1, p1 = ∞. The resulting theorem is stated and proved below. It might
be already known to the specialists, however, in this special form, it was not found in the
literature.

The proof is based on complex interpolation. Therefore we start by briefly recalling
the basic setting. For further information concerning real and complex interpolation, the
reader is, e.g., referred to [2] and [17]. Let A0 and A1 be two complex Banach spaces.
Then (A0, A1) is called an interpolation couple if there exists a linear complex Hausdorff
space such that both A0 and A1 are linearly and continuously embedded in this space.
Then A0 ∩ A1 with norm ‖a‖A0∩A1 = max{‖a‖A0 , ‖a‖A1} and A := A0 + A1 with norm
‖a‖A0+A1 = inf

a=a0+a1
{‖a‖A0 , ‖a‖A1} are also complex Banach spaces. Let

S := {z ∈ C : 0 < �z < 1}

be a strip in the complex plane. The collection F of all functions f (z) defined on S with
values in A with the two properties

(i) f (z) is continuous in S and analytic in S with

sup
z∈S

‖f (z)‖A < ∞ ,
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(ii) f (it) ∈ A0 and f (1 + it) ∈ A1, with t ∈ R, are continuous in the respective
Banach spaces and

‖f ‖F := max

{
sup
t

‖f (it)‖A0 , sup
t

‖f (1 + it)‖A1

}
< ∞

is again a Banach space.

For a given interpolation couple (A0, A1) and θ ∈ (0, 1), the space (A0, A1)[θ ] is defined
as

(A0, A1)[θ ] := {a ∈ A : there exists f (z) ∈ F with f (θ) = a} .
Equipped with the norm

‖a‖[θ ] := inf{‖f ‖F : f (θ) = a} ,
(A0, A1)[θ ] becomes a Banach space which has the following interpolation property:

Theorem B.1.
Let (A0, A1) and (B0, B1) be two interpolation couples and let T be a linear operator

from A0 + A1 into B0 + B1 such that its restriction to Aj is a bounded linear operator
from Aj into Bj , with norm ≤ Mj, j = 0, 1. Then for any θ ∈ (0, 1), the restriction of
T to (A0, A1) is a bounded linear operator from (A0, A1)[θ ] into (B0, B1)[θ ] with norm
≤ M1−θ

0 Mθ
1 .

Theorem B.1 is the main ingredient for the proof of Theorem B.2. For technical
reasons, we shall also need the so-called three line theorem, see [2], p. 4 for details.

Lemma B.1 (The three line theorem).
Assume that F(z) is analytic on S and bounded and continuous on S. If

|F(it)| ≤ N0, |F(1 + it)| ≤ N1, −∞ < t < ∞ ,

then we have for θ ∈ [0, 1] that

|F(θ + it)| ≤ N1−θ
0 Nθ

1 , −∞ < t < ∞ .

Now we are ready to establish the desired interpolation result with respect to L1,w
and L∞,w.

Theorem B.2.
Let T be a bounded linear operator fromL1,w into �1,w with normM1 and fromL∞,w

into �∞,w with normM∞. Then, for any 1 < p < ∞, the operator T is also bounded from

Lp,w into �p,w with norm M
1/p
1 M

(p−1)/p∞ .

Proof. According to Theorem B.1, it remains to show that

(L1,w, L∞,w)[θ ] = Lp,w and (�1,w, �∞,w)[θ ] = �p,w , (B.1)

where 1/p = 1 − θ . We only prove the first statement in (B.1), the second one follows
analogously. We have to show that

‖a‖[θ ] = ‖a‖(L1,w,L∞,w)[θ ] = ‖a‖Lp,w .
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We start with the proof of ‖a‖[θ ] ≤ ‖a‖Lp,w . Without loss of generality we may
assume that ‖a‖Lp,w = 1. For our purposes, it is convenient to define f as follows

f (z) := w(x)p(1−z)−1 exp
(
ε
(
z2 − θ2))|a(x)|p(1−z) a(x)

|a(x)| .

We observe that f is an analytic function on the strip S with f (θ) = a. In order to compute
‖a‖[θ ] we note that

‖f ‖F = max

{
sup
t

‖f (it)‖L1,w , sup
t

‖f (1 + it)‖L∞,w

}
. (B.2)

For ‖f (it)‖L1,w , we obtain

‖f (it)‖L1,w =
∫
w(x)

∣∣∣∣w(x)p(1−it)−1 exp
(
ε
( − t2 − θ2))|a(x)|p(1−it) a(x)

|a(x)|
∣∣∣∣ dx

= exp
(
ε
( − t2 − θ2)) ∫

|a(x)|pw(x)p dx
= exp

(
ε
( − t2 − θ2)‖a‖pLp,w = exp

(
ε
( − t2 − θ2) .

Consequently, for some suitable ε,

sup
t

‖f (it)‖L1,w = exp
( − εθ2) ≤ 1 . (B.3)

The L∞,w-norm of f (1 + it) can be estimated as

‖f (1 + it)‖L∞,w = sup
x
w(x)

∣∣∣∣w(x)p(1−(1+it))−1 exp
(
ε
(
(1 + it)2 − θ2))

× |a(x)|p(1−(1+it)) a(x)
|a(x)|

∣∣∣∣
= exp

(
ε
(
1 − t2 − θ2)) ≤ exp(ε) . (B.4)

Combining (B.3) and (B.4) we obtain by (B.2)

‖f ‖F ≤ exp(ε) → 1 for ε → 0 ,

and taking the infimum yields

‖a‖[θ ] ≤ ‖a‖Lp,w , i.e., Lp,w ⊂ (L1,w, L∞,w)[θ ] .

The next step is to show ‖a‖Lp,w ≤ ‖a‖[θ ]. Without loss of generality we may again
assume that ‖a‖[θ ] = 1. Then we have

‖a‖Lp,w = sup
{|〈a, b〉w| : ‖b‖L′

p,w
= 1

}
,

where, for 1 ≤ p < ∞, the dual pairing can be written as

〈a, b〉w :=
∫
a(x)b(x)w(x)p dx .

We define
F(z) := 〈f (z), g(z)〉w
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for some f ∈ F satisfying f (θ) = a and g given by

g(z) := w(x)1−p(1−z) exp
(
ε
(
z2 − θ2))|b(x)|pz/(p−1) b(x)

|b(x)|
for some b ∈ L′

p,w with ‖b‖L′
p,w

= 1. We want to estimate F(z) by means of Lemma B.1.
Since ‖a‖[θ ] = 1 we can find f ∈ F with f (θ)) = a such that ‖f (it)‖L1,w ≤ 1 + ε and
‖f (1 + it)‖L∞,w ≤ 1 + ε for all ε > 0. Any such function f provides us with suitable
bounds for |F(it)| and |F(1 + it)|. Indeed,

|F(it)| =
∣∣∣∣
∫
f (it)g(it)w(x)p dx

∣∣∣∣
≤

∫
|f (it)|∣∣w(x)1−p(1−it)∣∣w(x)p dx exp

(
ε
( − t2 − θ2))

≤
∫

|f (it)|w(x) dx exp
(
ε
( − t2 − θ2))

≤ ‖f (it)‖L1,w exp
(
ε
( − t2 − θ2))

≤ (1 + ε) exp
( − εθ2) ≤ exp(ε) =: N0

and

|F(1 + it)| =
∣∣∣∣
∫
g(1 + it)f (1 + it)w(x)p dx

∣∣∣∣
≤ ‖f (1 + it)‖L∞,w

∫
|b(x)|p(1+it)/(p−1)w(x)p(1+it) dx exp

(
ε
(
1 − t2 − θ2))

≤ (1 + ε)

∫
|b(x)|p/(p−1)w(x)p dx exp(ε) exp

(
ε
( − t2 − θ2))

≤ exp(2ε) =: N1 .

Hence, by using Lemma B.1,

|F(θ + it)| ≤ exp(2ε) for all 0 ≤ θ ≤ 1 .

Consequently,
|〈a, b〉w| ≤ |F(θ)| ≤ exp(2ε) ,

that is, ‖a‖Lp,w ≤ 1 and therefore (L1,w, L∞,w)[θ ] ⊂ Lp,w.
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