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Abstract

We propose a Wavelet-Galerkin scheme for the stationary Navier-
Stokes equations based on the application of interpolating wavelets.

To overcome the problems of nonlinearity, we apply the machinery
of interpolating wavelets presented in [10] and [13] in order to obtain
problem-adapted quadrature rules. Finally, we apply Newton’s method
to approximate the solution in the given ansatz space, using as inner solver
a steepest descendent scheme. To obtain approximations of a higher accu-
racy, we apply our scheme in a multi-scale context. Special emphasize will
be given for the convergence of the scheme and wavelet preconditioning.

MSC 2000: 46E35, 65N30, 41A17, 76D05, 65F35
keywords: Galerkin scheme, wavelets, multiscale and multilevel methods,

saddle-point problems, Navier-Stokes equation, Newton scheme, preconditioning

1 Introduction

During the last decade, wavelet analysis has become a field of increasing impor-
tance in the numerical treatment of partial differential equations and integral
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the University of Aveiro.

1



equations, see, e.g., [2, 11, 12, 14, 16, 17, 18, 20]. The advantages of wavelet
methods can be described as follows. It turns out that a simple diagonal scaling
applied to the stiffness matrices relative to the wavelet bases suffices to pro-
duce uniformly bounded condition numbers. Moreover, for a wide class integral
and pseudo-differential operators the stiffness matrix relative to wavelet bases
can be shown to be sufficiently close to sparse matrices so that sparse solvers
such as conjugate gradient schemes achieve optimal complexity under minimal
regularity assumptions.

So far all these potential advantages of wavelet methods have been exploited
in many settings and yield powerful convergent Galerkin schemes. The most
impressive results were obtained for self-adjoint and saddle point problems.
For these problems it has been possible to derive optimal adaptive wavelet
schemes [2, 11, 12, 14, 21].

It is therefore natural to explore the potential of such techniques for nonlin-
ear problems. A first strategy to attack was proposed in [12]. After transforming
the equation to a well-posed `2-problem, a locally convergent iterative scheme
is applied to the (infinite dimensional) problem. The involved operators are
adaptively evaluated within suitable updated error tolerances. However, in this
paper, we proceed in some sense, other way around. By using the classical
Galerkin approach, we project our problem onto an increasing sequence of ap-
proximation spaces spanned by wavelets. Then the computation of the actual
Galerkin approximation requires the solution of nonlinear equations in a (finite
dimensional) space. Althought the first approach seems to be more powerful, at
least in the long run, we are now interested in develop stable numerical schemes
and wavelet preconditioning for nonlinear equations. As a typical example we
will focus here on the Navier-Stokes equation as a model for the motion of an
incompressible, viscous fluid in a d-dimensional domain Ω ⊂ Rd, where d = 2
or d = 3 are of the primary interest. Stable numerical schemes for the Navier-
Stokes equations for large viscosities (i.e. small Reynolds numbers) can be
derived (see e.g. [4]). In this case, preconditioning results as derived in e.g.
[19, 29] carry over without serious difficulties. For small viscosities, the deriva-
tion of stable numerical schemes and, moreover, nice preconditioners is slightly
complicated due the lack of stability and global convergent results.

After projecting our problem onto the (finite dimensional) wavelet spaces, we
are faced with two basic problems, namely how to solve the resulting nonlinear
equation and how to evaluate the nonlinear functionals of wavelet expansions
induced by the addition of a nonlinear perturbation. For this purpose, we will
implement the approach proposed in [10].

This approach is based on a treatment of the nonlinear equation by a ver-
sion of Newton’s method and the evaluation of nonlinear terms is attacked by
a wavelet variant of the classical ”knot oriented quadrature rules” by using in-
terpolating scaling functions. In the end preconditioners are derived for the
presented version of Newton’s method.
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2 The Scope of Problems

We consider the following adaptation of the Navier-Stokes equations

τu− ν∆u + (u · grad)u + grad p = f in Ω, (1)
div u = 0 in Ω, (2)

u = 0 on Γ = ∂Ω (3)

with the additional condition
∫

Ω

pdx = 0. (4)

Hereby, u denotes the velocity of the fluid, p the hydrostatic pressure, ν is
the kinematic viscosity (equivalent to the inverse of the Reynolds number) and
f the vector of the external forces. The above adaptation usually results from
an implicit time discretization with time step τ > 0, as in the application of the
Rothe’s method to the nonstationary Navier-Stokes equations.

Throughout this work, we use boldface type to denote vector-valued func-
tions having d components. The corresponding function spaces will be presented
also in boldface type. For simplicity, we shall use the same inner product and
norm notation for vector field function spaces. In addition to the usual function
spaces we will introduce the function space

L2,0(Ω) :=
{

q ∈ L2(Ω) :
∫

Ω

qdx = 0
}

which is isomorphic to the quotient space L2(Ω)/R ( see e.g. [5, 32]).
Introducing the notation

gradu · gradv :=
d∑

i=1

gradui · grad vi =
d∑

i,j=1

∂ui

∂xj

∂vi

∂xj

and the multi-linear forms

aτ,ν(u,v) :=
∫

Ω

(τu · v + ν gradu · gradv)dx

b(v, q) := −
∫

Ω

(div v)qdx =
∫

Ω

v · grad qdx

c(u,v,w) :=
∫

Ω

(u · grad)v ·wdx =
d∑

m,n=1

∫

Ω

um ∂vn

∂xm
wndx

we obtain the mixed formulation: find (u, p) ∈ H1
0(Ω)× L2,0(Ω) such that

aτ,ν(u,v) + b(v, p) + c(u,u,v) =
∫
Ω

f · vdx ∀v∈H1
0(Ω) (5)

b(u, q) = 0 ∀q∈L2,0(Ω). (6)
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This formulation can be rewritten in the operator form: find (u, p) ∈ H1
0(Ω)×

L2(Ω) =: H such that

Fτ,ν(u, p) :=
(

Aτ,ν B′

B 0

)(
u
p

)
+

(
C(u)− f

0

)
=

(
0
0

)
(7)

where

Aτ,ν : H1
0(Ω) → H−1(Ω) 〈Aτ,νw,v〉H−1(Ω)×H1

0(Ω) = aτ,ν(w,v), ∀v∈H1
0(Ω)

B : H1
0(Ω) → L2(Ω) 〈Bw, q〉H−1(Ω)×H1

0(Ω) = b(w, q) , ∀q∈L2,0(Ω)

B′ : L2,0(Ω) → H−1(Ω) 〈B′r,v〉L2(Ω)×L2(Ω) = b(v, r) , ∀v∈H1
0(Ω)

C(·) : H1
0(Ω) → H−1(Ω) 〈C(w),v〉H−1(Ω)×H1

0(Ω) = c(w,w,v) , ∀v∈H1
0(Ω).

For the numerical treatment of the operator equation (9), we employ a New-
ton scheme. To this end let us take a closer look at the Fréchet derivative of
the operator Fτ,ν(u, p):

For a fixed u,v and a small w,

c(u + w,u + w,v)− c(u,u,v) = c(u,w,v) + c(w,u,v) + o(w). (8)

Thus, the Fréchet derivative Fτ,ν in the operator form, is given by

DFτ,ν(u, p) :=
(

Aτ,ν + N1(u) + N2(u) B′

B 0

)
(9)

where for a fixed u ∈ H1
0(Ω), the operators N1(u), N2(u) : H1

0(Ω) → H−1(Ω)
are defined by

〈N1(u)w,v〉H−1(Ω)×H1
0(Ω) = c(u,w,v) , ∀v∈H1

0(Ω)

〈N2(u)w,v〉H−1(Ω)×H1
0(Ω) = c(w,u,v) , ∀v∈H1

0(Ω).

This means that in each step of the Newton scheme, we solve a linear system
of the form

DFτ,ν(u, p)
(

w
r

)
= −Fτ,ν(u, p) (10)

and afterwards, update the (approximate) solution by the relation
(

u
p

)
←

(
u
p

)
+

(
w
r

)
. (11)

Consider the nodal bases Φj := {φj,k : k ∈ Λj} and Ξj = {ξj,k : k ∈ Θj}
and the ansatz spaces Xj = span Φj and Mj = span Ξj .

To solve numerically the operator equation (7) in the Wavelet-Galerkin sense,
we apply the Newton scheme projecting the linear equation (10) onto the ap-
proximation spaces Xj ×Mj .
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Consider the ansatz expansions

uj =
∑

k∈Λj

yj,kφj,k := yT
j Φj

wj =
∑

k∈Λj

xj,kφj,k := xT
j Φj

pj =
∑

k∈Θj

tj,kξj,k := tT
j Ξj

rj =
∑

k∈Θj

sj,kξj,k := sT
j Ξj

and the matrix operators

Aτ,ν;j := (aτ,ν(φj,l, φj,k))k,l∈Λj

Bj := (b(φj,l, ξj,k))k∈Λj ,l∈Θj

N1;j(yT
j Φj) :=

(
c(yT

j Φj , φj,l, φj,k)
)
k,l∈Λj

N2;j(yT
j Φj) :=

(
c(φj,l,yT

j Φj , φj,k)
)
k,l∈Λj

Cj(yT
j Φj) :=

(
c(yT

j Φj ,yT
j Φj , φj,k)

)
ks∈Λj

= N2;j(yT
j Φj)yj

fj := (〈f , φj,l〉)l∈Λ

Now, the Newton scheme (10)-(11) in the nodal basis representation, is given
by the equivalent system

Gτ,ν;j(yj)
(

xj

tj

)
= Sj(yj) (12)

yj ← xj (13)

with

Gτ,ν;j(yj) =
(

Aτ,ν;j + N1;j(yT
j Φj) + N2;j(yT

j Φj) BT
j

Bj 0

)
(14)

gj(yj) =
(

N1;j(yT
j Φj)yj + fj

0

)
(15)

Some drawbacks arise in the numerical solution in form of the update of
the matrices N1;j(yT

j Φj),N2;j(yT
j Φj) in each iteration, the numerical stability

of the scheme and preconditioning strategies to increase the accuracy of the
results.

To solve the first drawback, we will use knot oriented quadrature rules to
approximate the arising integrals numerically in a problem adapted way. Af-
terwards, we will prove the convergence of the perturbed system to the original
system and moreover, we will introduce some strategies to ensure the stability
and to precondition the perturbed system.
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3 Multilevel setting

Our goal is to develop Galerkin methods for the approximate solution of (9).
However, in difference to conventional finite element discretizations we will work
with trial spaces that do not only exhibit the usual approximation properties
and good localization but in addition lead to expansions of any element in the
underlying Hilbert spaces in terms of multiscale or wavelet bases with certain
stability properties. We will show that these stability properties ultimately
stated in terms of norm equivalences for Sobolev spaces will indeed allow us to
improve on previous theoretical investigations for the above problem. In this
section we formulate the relevant facts for our framework. These results are
essentially known (cf. [17, 18]) but for the convenience of the reader we include
a brief summary of the relevant facts.

3.1 Stable Multiscale Bases

Suppose H is a Hilbert space (of functions defined on Ω, say) with inner product
< ·, · >. Throughout this section orthogonality will always be understood rela-
tive to this inner product. Typical examples include H = L2(Ω), H = Hs(Ω) or
products of such spaces. Let {Vj}∞j=0 be a sequence of closed nested subspaces
of H whose union is dense in H. In general the spaces Vj are spanned by single
scale bases (or nodal bases) Φj = {φj,k : k ∈ Λj} which are uniformly stable, i.e.,

‖c‖`2(Λj) ∼ ‖
∑

k∈Λj

ckφj,k‖H (16)

uniformly in j ∈ N0. Here we denote as usual ‖ · ‖2H =< ·, · > and ‖c‖2`2(Λj)
=∑

k∈Λj
|ck|2.

Successively updating a current approximation in Vj−1 to a better one in Vj

can be facilitated if stable bases

Ψj = {ψj,k : k ∈ Jj}
for some complement Wj of Vj−1 in Vj are available. Defining for convenience
Ψ0 := Φ0, W0 := V0, any vn =

∑
k∈Λn

ckφn,k ∈ Vn has then an alternative
multiscale representation

vn =
n∑

j=0

∑

k∈Jj

dj,kψj,k

which corresponds to the direct sum decomposition

Vn =
n⊕

j=0

Wj .

Of course, there is a continuum of possible choices of such complements. Or-
thogonal decompositions would correspond to wavelets. However, orthogonality
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often interferes with locality and the actual computation of orthonormal bases
might be too expensive. Moreover, in certain applications orthogonal decompo-
sitions are actually not best possible [18]. The essential constraint on the choice
of Wj is that

Ψ =
⋃

j∈N0

Ψj

forms a Riesz-basis of H, i.e. every v ∈ H has a unique expansion

v =
∞∑

j=0

∑

k∈Jj

< v, ψ̃j,k > ψj,k (17)

such that

‖v‖H ∼



∞∑

j=0

∑

k∈Jj

| < v, ψ̃j,k > |2



1
2

, v ∈ H, (18)

where Ψ̃ = {ψ̃j,k : k ∈ Jj , j ∈ N0} forms a biorthogonal system

< ψj,k, ψ̃j′,k′ >= δj,j′δk,k′ , j, j′ ∈ N0, k ∈ Jj , k′ ∈ Jj′ (19)

and is in fact also a Riesz-basis for H (cf. [17]).
To explain one aspect why this is important let Lj denote the transformation

that takes the coefficients dj,k in the multiscale representation of vn into the
coefficients ck of the single scale representation. It corresponds to the synthesis
part of the fast wavelet transform. In fact, it is known that the Riesz basis
property of Ψ is equivalent to Lj and L−1

j being well conditioned, i.e.,

‖Lj‖, ‖L−1
j ‖ = O(1), n →∞, (20)

where ‖ · ‖ denotes the spectral norm [16, 17].
With such a pair of biorthogonal bases Ψ and Ψ̃ one can associate canonical

projectors

Qnv :=
n∑

j=0

∑

k∈Jj

< v, ψ̃j,k > ψj,k, Q′
nv :=

n∑

j=0

∑

k∈Jj

< v, ψj,k > ψ̃j,k

which are obviously adjoints of each other. Of course, when Ψ is a Riesz-basis
then the Qn and hence their adjoints Q̃n are uniformly bounded in H. Denoting
by Ṽn the range of Q′n we have therefore two sequences of nested closed subspaces
Vj and Ṽj , respectively, whose union is easily seen to be dense in H [16].

While the Riesz-basis property of Ψ implies the existence of a biorthogonal
Riesz-basis Ψ̃ as well as the uniform boundedness of the projectors Qn and Q′n,
the converse is known not to be true in general [17]. Additional conditions
for verifying the Riesz-basis property for a general Hilbert space setting have
been established in [17]. Here we are only interested in their specialization to
the particular case H = L2(Ω) (where as above Ω is either a closed surface or a
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domain in Rd) and denote by Hs a corresponding scale of Sobolev spaces. What
turns out to matter is that both {Vn} and {Ṽn} should have some approximation
and regularity properties which can be stated in terms of the following pair of
estimates. There exists some γ > 0 such that the inverse estimate

‖vn‖Hs(Ω) . 2ns‖vn‖L2(Ω), vn ∈ Vn, (21)

holds for s < γ. Moreover, there exists some m ≥ γ such that the direct estimate

inf
vn∈Vn

‖v − vn‖L2(Ω) . 2−sn‖v‖Hs(Ω), v ∈ Hs(Ω), (22)

holds for s ≤ m. Such estimates are known to hold for every finite element
or spline space. For instance, for piecewise linear finite elements one has γ =
3/2,m = 2.

It will be convenient to introduce the following notation. Let

Λ := {λ = (j, k) : k ∈ Λj , j ∈ N0} =
∞⋃

j=0

({j} × Λj).

and define
|λ| := j if λ ∈ Λj .

The following result from [17] will play a central role in the subsequent
analysis.

Theorem 3.1 Suppose that Ψ = {ψλ : λ ∈ Λ} and Ψ̃ = {ψ̃λ : λ ∈ Λ} are
biorthogonal collections in L2(Ω) and that the associated sequence of projectors
{Qj}∞j=0 is uniformly bounded. If both {Qj} and {Q′j} satisfy (21) and (22)
relative to some γ, γ′ > 0, γ ≤ m, γ′ ≤ m′, then

‖v‖Hs(Ω) ∼
(∑

λ∈Λ

22|λ|s| < v, ψ̃λ > |2
) 1

2

, s ∈ (−γ′, γ), (23)

∼
(∑

λ∈Λ

22|λ|s| < v, ψλ > |2
) 1

2

, s ∈ (−γ, γ′), v ∈ Hs(Ω).

Moreover, the projectors Qj, Q′j are uniformly bounded in Hs(Ω), s ∈ (−γ′, γ)
and s ∈ (−γ, γ′), respectively.

For more information about the construction of multiscale bases Ψ, Ψ̃ with
the above properties the reader is referred to [22]. Throughout the remainder
of this paper we will assume that Ψ and Ψ̃ satisfy the assumptions of Theorem
3.1 and for

γ > t +
d

2
, γ′ > −t +

d

2
, (24)
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we know that there exist positive constants 0 < c3, c4 < ∞ for which

c3

(∑

λ∈Λ

2−2t|λ|| < v, ψλ > |2
)1/2

≤ ‖v‖−t ≤ c4

(∑

λ∈Λ

2−2t|λ|| < v, ψλ > |2
)1/2

.

(25)
Finally, for our applications it will be important to work with local bases,

i.e., we will always assume that

diam (suppφn,k) , diam(suppψn,k) ∼ 2−n, n ∈ N. (26)

Furthermore, it is desirable that the φ̃n,k, ψ̃n,k have the same property

diam(suppφ̃n,k), diam(suppψ̃n,k) ∼ 2−n, n ∈ N. (27)

3.2 Interpolation Projectors and knot oriented quadra-
ture rules

In our approach we propose to approximate the trilinear form c(z,w,v) by a
suitable quadrature rule.

For this purpose it is convenient to work with interpolating refinable func-
tions, i.e., one requires that φ is at least continuous and satisfies the interpolation
property

φ(k) = δ0,k, k ∈ Zd. (28)

and the integral property ∫

Rd

φ(x)dx = 1 (29)

As already stated, we only consider compactly supported scaling functions.
Furthermore, functions φ which are sufficiently smooth and well-located are
preferable. In recent studies, several examples of refinable functions satisfying
these conditions have been constructed, see, e.g., [13, 23, 24, 25, 26, 31]. In
particular, in all our numerical computations, we select the interpolating scal-
ing functions from the family of the so-called Deslauriers-Dubuc fundamental
functions. These functions, which are obtained via auto-correlation of the well-
known compactly supported orthogonal Daubechies scaling functions, have very
attractive properties; see, e.g., [25, 26]. In fact, if we denote by φ := φ2N the
Deslauriers-Dubuc scaling function of order 2N , obtained as autocorrelation of
the Daubechies scaling function associated to the parameter N , we have that
φ has compact support and is interpolating. Moreover, φ2N has polynomial
exactness 2N − 1 and its smoothness increases with N .

An algorithm for constructing a dual scaling function φ̃ for a given interpo-
lating scaling function φ was developed in [28].

Let us restate some basic facts about interpolation projector related to φ:
For what follows, we will denote by φ := (φ1, φ2, . . . , φd) the vector field of

the interpolating scaling functions such that φm = φn. To solve a linear system
in each Newton iteration, our main goal is consists in approximate the trilinear
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form c(zj ,wj ,vj) by a suitable quadrature rule. In our case, we consider for each
component of φ := (φ1, φ2, . . . , φd) and for a real valued continuous function f
which satisfy periodic conditions, the interpolating projectors In

j defined by

In
j (f) =

∑

k∈Λj

f(2−jk)φn(2j · −k) (30)

and the quadrature rule

πn
j (f) =

∫

Ω

In
j (f)dx (31)

We state a first result on the operators In
j (c.f. [10]).

Lemma 3.1 The operator In
j is a bounded operator from L∞ to L∞.

As a consequence, we obtain the following theorem (again, c.f. [10]).

Theorem 3.2 Let f be uniformly Hölder-α. Then, we have

||f − In
j f ||∞ ≤ C2−jdα.

For what follows, let

c̃j(z,w,v) =
d∑

m,n=1

πn
j

(
zm ∂wn

∂xm
vn

)

be the resulting perturbed trilinear form.
Using the interpolating property (28) and the integral property (29) our

quadrature rule (31) becomes then

πn
j (f) =

∫

Ω

In
j (f)dx =

∑

l∈Λj

f(2−j l)
∫

Ω

φn(2jx− l)dx

=
∑

l∈Λj

f(2−j l)
(

2−jd

∫

Ω

φn(x)dx

)

= 2−jd
∑

l∈Λj

f(2−j l). (32)

Applying (32) to c̃j(z,w,v), we obtain

c̃j(z,w,v) = 2−jd
d∑

m,n=1

zm(2−jk)
∂wn

∂xm
(2−jk)vn(2−jk) (33)
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4 Applications to the Navier-Stokes equations

4.1 Construction of discretized problem

According to our approach, we solve numerically a perturbed version of the
system (12), where we consider

G̃τ,ν;j(yj) =
(

Aτ,ν;j + Ñ1;j(yT
j Φj) + Ñ2;j(yT

j Φj) BT
j

Bj 0

)
(34)

g̃j(yj) =
(

Ñ1;j(yT
j Φj)yj + fj

0

)
(35)

instead of Gτ,ν;j(yj) and gj(yj), respectively.
Here Aτ,ν;j , Ñ1;j(yT

j Φj) and Ñ2;j(yT
j Φj) are diagonal block matrices with

diagonal blocks An
τ,ν;j ,Ñ

n
1;j(y

T
j Φj), and Ñn

2;j(y
T
j Φj), for n = 1, . . . , d. Bj is a

matrix with column blocks Bn
j and fj is a column vector with row blocks fn

j for
n = 1, . . . , d.

Details for the construction of the matrices Aτ,ν;j and Bj can be found in,
e.g., [20]. According to (3.2), for sufficiently smooth functions, we can construct
each row block fn

j by using the formula (32).
For the construction of the perturbed matrices Ñp;j(yT

j Φj), p = 1, 2, we
take into account the perturbed trilinear form c̃j(z,w,v) obtained in (33).

Using (12) and the interpolating property (28) for each component of the
scaling function φ, the entries of the matrix blocks Ñn

1;j(y
T
j Φj) and Ñn

2;j(y
T
j Φj)

are given by
(
Ñn

2;j(y
T
j Φj)

)
k,l∈Λj

= δk,l · grad
(
yn

j
T Φn

j

)
(2−jk)

and (
Ñn

2;j(y
T
j Φj)

)
k,l∈Λj

=
d∑

m=1

∂φn
j,l

∂xm
(2−jk)yn

j,k,

respectively, for each n = 1, . . . , d. Hereby, yj := (y1
j , . . . ,y

d
j )T .

In both cases, the construction of the matrix blocks Ñn
p;j(y

T
j Φj), p = 1, 2,

involves the evaluation of the partial derivatives of the scaling functions.
Fixing Mm,n

j :=
(

∂φn
j,l

∂xm
(2−jk)

)
k,l∈Λj

and expanding ∂φn
j,l

∂xm
(2−jk) in a biorthog-

onal expansion, we obtain due the interpolating property (28) the identity

∂φn
j,l

∂xm
(2−jk) = 2jd/2

〈
∂φn

j,lm

∂xm
, φ̃n

j,km

〉

and, moreover,

(
grad

(
yn

j
T Φn

j

)
(2−jk)

)
k∈Λj

=
d∑

m=1

Mm,n
j yn

j .
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Consequently, we obtain for each n = 1, . . . , d, the formulae

Ñn
1;j(y

T
j Φj) = diag(yn

j )

(
d∑

m=1

Mm,n
j

)
(36)

Ñn
2;j(y

T
j Φj) := 2−jd/2 diag

(
d∑

m=1

Mm,n
j yn

j

)
, (37)

where diag(x) denotes the diagonal matrix associated to the column vector x.
In the next section, we will prove that the exact solution of the problem (7)

in Xj ×Mj is the limit of the solution of the perturbed problem

F̃τ,ν;j(u, p) :=
(

Aτ,ν B′

B 0

) (
u
p

)
+

(
C̃j(u)− f

0

)
=

(
0
0

)
(38)

in Xj ×Mj , where C̃j is a nonlinear operator defined by

〈C̃j(u),v〉H−1(Ω)×H1
0(Ω) = c̃j(u,u,v) ∀v∈H1

0(Ω)

4.2 Convergence Result

In this section, we consider the convergence of our Galerkin approximation of
the Navier-Stokes equation (1)-(4). Hence, we aim to estimate the error

‖u− u∗j‖H1(Ω) + ‖p− p∗j‖L2(Ω),

where (u∗j , p
∗
j ) is assumed to be the limit of the Newton scheme. This can be

done by means of the following decomposition

‖u− u∗j‖H1(Ω) ≤ ‖u− uj‖H1(Ω) + ‖uj − ũj‖H1(Ω) + ‖ũj − u∗j‖H1(Ω),

‖p− p∗j‖L2(Ω) ≤ ‖p− pj‖L2(Ω) + ‖pj − p̃j‖L2(Ω) + ‖p̃j − p∗j‖L2(Ω)

where (uj , pj) is the exact solution of (7) in Xj ×Mj , (ũj , p̃j) is the solution of
the perturbed system (38) in Xj×Mj and (u∗j , p

∗
j ) is the Newton approximation

of (ũj , p̃j).
For the Newton approximation we have quadratic convergence for a suffi-

ciently close initial approximation. The terms ‖u−uj‖H1(Ω) and ‖p− pj‖L2(Ω)

can be estimated by the classical abstract estimates and the Jackson-type the-
orems for our wavelet bases, for instance, see [30], [9], or [10]. Therefore, it is
enough to prove the following theorem.

Theorem 4.1 Let (uj , pj) be the exact solution on the space Xj ×Mj system
(7), (ũj , p̃j) the exact solution of the perturbed system Xj × Mj. If for each
v ∈ Xj, the Fréchet derivative Aτ,ν + C̃j(v) is invertible on kerB and if for
α > 0, (uj ·grad)uj is in the Sobolev space Hs(Ω), s > d/2+α, then there exists
positive constants αj , α̃j , β̃j and k1 and such that

12



‖uj − ũj‖H1
0(Ω) ≤

1
α̃j

k12−djα (39)

‖pj − p̃j‖L2(Ω) ≤
1
β̃j

(
1 +

αj

α̃j

)
k12−djα (40)

Proof: Consider the Navier-Stokes problem in the operator form (9),

Aτ,νuj + B′pj + C(uj) = f

Buj = 0

and its associated problem arising by applying the quadrature rule

Aτ,ν ũj + B′p̃j + C̃j(ũj) = f

Bũj = 0

Denoting by vj = uj − ũj and qj = pj − p̃j , we obtain

Aτ,νvj + C(uj)− C̃j(ũj) + B′qj = 0

Bvj = 0

that is,

Aτ,νvj + C̃j(uj)− C̃j(ũj) + B′qj = C̃j(uj)− C(uj) (41)
Bvj = 0 (42)

At this stage, we assume for each v ∈ Xj that the Fréchet derivative of the
operator Aτ,ν + C̃j(v) is invertible on ker B.

Looking at the perturbed operator C̃j in the mixed form and choosing wj ∈
Xj sufficiently small, as in (8), we have the relation

〈C̃j(uj)− C̃j(ũj),wj〉H−1(Ω)×H1
0(Ω) = c̃j(ũj ,vj ,wj) + c̃j(vj , ũj ,vj) + o(wj).

Therefore,

〈C̃j(uj)− C̃j(ũj),wj〉H−1(Ω)×H1
0(Ω) = 〈(Ñ1;j(ũj) + Ñ2;j(ũj))vj ,wj〉H−1(Ω)×H1

0(Ω), (43)

where Ñ1;j(ũj) + Ñ2;j(ũj) is the Fréchet derivative of the perturbed operator
C̃j(ũj).

Moreover, as in [5], page 133, we have the estimates

||vj ||H1
0(Ω) ≤

1
α̃j
‖C̃j(uj)− C(uj)‖H−1(Ω) (44)

||qj ||L2(Ω) ≤
1
β̃j

(
1 +

αj

α̃j

)
‖C̃j(uj)− C(uj)‖H−1(Ω), (45)

13



where the constants 0 < α̃j ≤ αj < ∞ comes from the norm equivalence

α̃j‖vj‖H1
0(Ω) ≤ ‖Aτ,νvj + Ñ1;j(ũj)vj + Ñ2;j(ũj)vj‖H−1(Ω) ≤ αj‖vj‖H1

0(Ω)

and β̃j > 0 comes from the inf-sup (or LBB) condition

inf
q∈Mj

sup
v∈Xj

〈Bv, q〉H−1(Ω)×H1
0(Ω)

‖v‖H1
0(Ω)‖v‖H1

0(Ω)

≥ β̃j , (46)

On the other hand, under the assumption that (uj ·grad)uj is in the Sobolev
space Hs(Ω), s > d/2+α, by Sobolev’s embedding theorem [1] we conclude that
(uj · grad)uj is in the Hölder space Cα(Ω). As a consequence of Theorem 3.2,
we obtain the estimate

|c̃j(uj ,uj ,wj)− c(uj ,uj ,wj)| ≤ k12−djα (47)

for some positive constant k1 independent of j.
Therefore, we obtain the upper estimates (39) and (40) for ‖uj − ũj‖H1(Ω)

and ‖pj − p̃j‖H1(Ω), respectively. ¥

4.3 Newton based steepest descendent scheme

The implementation of the Newton scheme involves, in each iteration, the res-
olution of a saddle point problem. Instead of considering the nodal bases Φj

and Ξj , to span Xj and Mj , respectively, we will consider the multiscale bases
Ψ :=

⋃j
i=0 Ψi and Υ :=

⋃j
i=0 Υi, where Ψi and Υi are stable bases for the

wavelet spaces Xi ªXi−1 and Mi ªMi−1, respectively.
As it was shown in [17, 19, 29], working in the multiscale sense allows us to

construct preconditioners in an easier way as compared with the construction
of the preconditioners in the multigrid and finite elements sense.

Let Lj denote the matrix which transforms the coefficients relative to Ψj into
those relative to the nodal basis Φj and Uj denote the matrix which transforms
the coefficients relative to Υj into those relative to the nodal basis Ξj .

Choosing

Qj :=
(

L−1
j 0
0 U−1

j

)

(
xΨ

tΨ

)
:= Qj

(
xj

tj

)
=

(
L−1

j xj

U−1
j sj

)

yΨ = L−1
j yj

and considering the multi-scale representations for the matrix operators

Aτ,ν;Ψ := L−1
j Aτ,ν;jLj ;

Ñn;Ψ(yT
j Φj) := L−1

j Ñn;j(yT
j Φj)Lj , n = 1, 2

fΨ := L−1
j fj ,

BΨ,Υ := U−1
j BjLj

14



the equation in the multilevel basis is given by

G̃τ,ν;Ψ,Υ(yj)
(

xΨ

tΨ

)
= g̃Ψ(yj),

with

G̃τ,ν;Ψ,Υ(yj) := Qj G̃τ,ν;j(yj) =
(

Aτ,ν;Ψ + Ñ1;Ψ(yT
j Φj) + Ñ2;Ψ(yT

j Φj) BT
Ψ,Υ

BΨ,Υ 0,

)
(48)

g̃Ψ(yj) := Qj g̃j(yj) =
(

Ñ1;Ψ(yT
j Φj)L−1

j yΨ + fΨ
0

)
. (49)

There are a lot of approaches concerning the numerical solution of saddle
point problems, see e.g. [3, 4, 6, 7, 11, 14, 21, 29]. Two of the most popular
approaches implemented in the wavelet context are the Uzawa scheme and the
preconditioning conjugate gradient scheme proposed by Bramble and Pasciak
in [6] and further developed by Kunoth [29] in the wavelet and multiscale sense.

One of the drawbacks of Uzawa algorithm is that the convergence of the
scheme depends on the spectra of the Schur complement, and hence, we cannot
precondition the Schur complement associated to the (1, 1)-block without com-
puting its inverse. On the contrary, the Bramble and Pasciak approach allows us
to preconditioning the system without computing the inverse of the (1, 1)-block.
Taking up this approach, one can turn a saddle point problem into a positive
definite one. It requires a good preconditioner for the (1, 1)-block in (48).

For questions concerning the preconditioning of the saddle point system, we
will adopt a steepest descendent variant of the Bramble and Pasciak approach,
[6]. Let us take a close look to this approach:

Let
F̃τ,ν;Ψ(yj) = Aτ,ν;Ψ + Ñ1;Ψ(yT

j Φj) + Ñ2;Ψ(yT
j Φj).

Suppose that P̃τ,ν;Ψ(yj) is a positive definite preconditioner of F̃τ,ν;Ψj (yj),
that is

γjvT P̃τ,ν;Ψ(yj)v ≤ vT F̃τ,ν;Ψ(yj)v ≤ ΓjvT P̃τ,ν;Ψ(yj)v (50)

holds for all v ∈ `2(Λj) with 1 < γj ≤ Γj < ∞. Thus,

(γj−1)vT P̃τ,ν;Ψ(yj)v ≤ vT
(
F̃τ,ν;Ψ(yj)− P̃τ,ν;Ψ(yj)

)
v ≤

(
1− 1

Γj

)
vT F̃τ,ν;Ψ(yj)v

holds for all v 6= 0.
Moreover, the sesquilinear form

[(
u
p

)
,

(
v
q

)]
:= uT

(
F̃τ,ν;Ψ(yj)− P̃τ,ν;Ψ(yj)

)
v + pT q

is positive definite.
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Pre-multiplication of the matrix G̃τ,ν;Ψ(yj) and the right hand side g̃Ψ(yj)
by the matrix

MΨ,Υ(yj) =
(

P̃τ,ν;Ψ(yj)−1 0
BΨ,ΥP̃τ,ν;Ψ(yj)−1 −I

)

yields the system

Ĝτ,ν;Ψ,Υ(yj)
(

xΨ

tΨ

)
= ĝΨ,Υ(yj) (51)

with

Ĝτ,ν;Ψ,Υ(yj) =

(
P̃τ,ν;Ψ(yj)−1F̃τ,ν;Ψ(yj) P̃τ,ν;Ψ(yj)−1BT

Ψ,Υ

BΨ,Υ

(
P̃τ,ν;Ψ(yj)−1F̃τ,ν;Ψ(yj)− I

)
BΨ,ΥP̃τ,ν;Ψ(yj)−1BT

Ψ,Υ

)
(52)

ĝΨ,Υ(yj) =


 P̃τ,ν;Ψ(yj)−1

(
Ñ1;Ψ(yT

j Φj)L−1
j yΨ + fΨ

)

BΨ,ΥP̃τ,ν;Ψ(yj)−1
(
Ñ1;Ψ(yj)L−1

j yΨ + fΨ
)


 . (53)

Let us remark that the matrix Ĝτ,ν;Ψ,Υ(yj) is positive definite relative to the
sesquilinear form [·, ·].

Using this fact, we can implement as in [6] a steepest descendent algorithm
to solve the system (51) relative to the sesquilinear form [·, ·].

Furthermore, according to [6, 29], the matrix operator

P̂τ,ν;Ψ,Υ(yj) :=
(

I 0
0 BΨ,ΥF̃τ,ν;Ψ(yj)−1BT

Ψ,Υ

)

is spectrally equivalent to the matrix operator Ĝτ,ν;Ψ,Υ(yj) relative to the func-
tional [·, ·], in the sense that

µj

[
P̂τ,ν;Ψ,Υ(yj)

(
v
q

)
,

(
v
q

)]
≤

[
Ĝτ,ν;Ψ(yj)

(
v
q

)
,

(
v
q

)]

≤ σj

[
P̂τ,ν;Ψ,Υ(yj)

(
v
q

)
,

(
v
q

)]

holds for all (v,q) ∈ `2(Λj)× `2(Θj), where

µj =




3Γj − 1
2Γj

+

√√√√(
1− 1

Γj

)
+

(
1− 1

Γj

)2

4




−1

σj = Γj

(
1 +

√
1− 1

Γj

)
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The constants µj and σj tend uniformly to one as Γj tends to one, implying
that the eigenvalues of P̂τ,ν;Ψ(yj)−1Ĝτ,ν;Ψ(yj) tend to one uniformly. There-
fore, P̃τ,ν;Ψ(yj) should be scaled such that (50) holds with Γj not so far from
one. Furthermore, the constants indicate that the spectral condition number of
P̂τ,ν;Ψ(yj)−1Ĝτ,ν;Ψ(yj) with respect to [·, ·] grows, at most, proportional to the
largest eigenvalue of P̃τ,ν;Ψ(yj)−1F̃τ,ν;Ψ(yj).

Now our main problem is reduced to find a preconditioner for the matrix
F̃τ,ν;Ψ(yj). Contrary to the linear case presented in [19] and [29], there are no
well-establish strategies to construct wavelet preconditioners for the nonlinear
case. In the nonlinear case, we need to construct a preconditioner in each
Newton step which depends on the level j and on the last approximation.

We will develop an approach in this direction in the section 5.

5 Wavelet Preconditioning

Typically, stiffness-type matrices in the nodal basis exhibit a polynomial growth
rate of spectral condition proportional to the size. There is a whole theory
concerning preconditioning strategies, see e.g., [19, 20, 29]. Concerning the H1-
coercivity of the operator it can be easily shown, under the stability of the
wavelet basis, so that, our scheme would converge rapidly. In the non-coercive
case, things are slightly complicated.

We assume that our solution is regular in each iteration and for each level
j, that is

sup
v∈Xj

aτ,ν(v,v) + c̃j(v,yT
j Φj ,v) + c̃j(yT

j Φj ,v,v)
‖v‖2 > 0

Following the construction described in the subsection 4.3 and according to
[19, 29], under the stability of the wavelet basis Ψi, i = 0, . . . , j, a preconditioner
P̃τ,ν;Ψ(yj) can be defined by

P̃τ,ν;Ψ(yj) = L−1
j D̃τ,ν;j(yj)Lj ,

where D̃τ,ν;j(yj) is a diagonal block matrix with diagonal blocks D̃n
τ,ν;j(yj), n =

1, . . . , d, which entries are given by
(
D̃n

τ,ν;j(yj)
)

(i,i′),(k,k′)
= di(yn

j )δi,i′δk,k′ i, i′ = 0, . . . , j k, k′ ∈ Λi

for certain positive constants di(yn
j ), n = 1, . . . , d.

We are interested in estimate the condition number of P̃τ,ν;Ψ(yj)−1F̃τ,ν;Ψ(yj),
that is

κ
(
P̃τ,ν;Ψ(yj)−1F̃τ,ν;Ψ(yj)

)
≤ C

Γj

γj
, (54)

where the constants γj and Γj comes from the inequality (50).
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Let us remark that our matrix looks like the expansion

D̃n
τ,ν;Ψ(yj)vn =

j∑

i=0

di(yn
j )

∑

k∈Λi

〈vn, ψ̃n
i,k〉ψn

i,k

and 〈
D̃τ,ν;Ψ(yj)v,v

〉
:=

d∑
n=1

〈
D̃n

τ,ν;Ψ(yj)vn,vn
〉

.

The operator Aτ,ν;Ψ is a diagonal block matrix, with blocks An
τ,ν;Ψ, n =

1, . . . , d, where each block is a linear combination of stiffness and mass matrices.
Therefore, we can conclude by c.f. [20] that each block is spectrally equivalent
to τ +ν22jd. Then we have the spectral equivalent relation for each block An

τ,ν;Ψ

〈An
τ,ν;Ψψn

i,k, ψn
i,k〉

‖ψn
i,k‖2

∼ τ + ν22jd (55)

The matrices Ñp;Ψ(yT
j Φj), p = 1, 2, are diagonal blocks matrices with diag-

onal blocks Ñn
p;Ψ(yT

j Φj), n = 1, . . . , d.
Let us take a close look for the diagonal entries of Ñn

p;Ψ(yT
j Φj), p = 1, 2,

d∑
m=1

πn
j

(
ym

j
T Φm

j

∂ψn
i,k

∂xm
ψn

i,k

)

and
d∑

m=1

πn
j

(
ψm

i,k

∂(yn
j

T Φn
j )

∂xm
ψn

i,k

)
,

respectively. We will make estimates using knot oriented quadrature rules de-
veloped in the subsection 3.2.

Let us remark that

‖ψn
i,k‖2 ≈ 2−jd

∑

l∈Λj

|ψn
i,k(2−j l)|2,

1
2

∫

Ω

∂|ψn
i,k|2

∂xm
dx =

∫

Ω

∂ψn
i,k

∂xm
ψn

i,kdx ≈ 2−jd
∑

l∈Λj

∂ψn
i,k

∂xm
(2−j l)ψn

i,k(2−j l),

Then we have

min
l∈Λj

d∑
m=1

∂(yn
j

T Φn
j )

∂xm
(2−j l) ≤

∑d
m=1 πn

j

(
ψm

i,k

∂(yn
j

T Φn
j )

∂xm
ψn

i,k

)

‖ψn
i,k‖2

≤ max
l∈Λj

d∑
m=1

∂(yn
j

T Φn
j )

∂xm
(2−j l) (56)

∣∣∣∣∣
d∑

m=1

πn
j

(
ym

j
T Φm

j

∂ψn
i,k

∂xm
ψn

i,k

)∣∣∣∣∣ ≤ 2jd/2 max
l∈Λj

|yn
j,l|

∣∣∣∣∣
d∑

m=1

∫

Ω

∂|ψn
j,k|2

∂xm
dx

∣∣∣∣∣ . (57)
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Expanding ∂(yn
j

T Φn
j )

∂xm
in a bi-orthogonal expansion and using the interpolat-

ing property and the identity 〈∂φn
j,p

∂xm
, φ̃n

j,l〉 = 2jgp,l, where

gp,l :=
∫

Ω

∂φn

∂xm
(x− p)φ̃n(x− l)dx

is a constant independent of j, m and n. Then we have

∂(yn
j

T Φn
j )

∂xm
(2−j l) = 2j(d/2+1)

∑

p∈Λj

gp,ly
n
j,p.

Moreover, the inequality (56) becomes then

∑d
m=1 πn

j

(
ψm

i,k

∂(yn
j

T Φn
j )

∂xm
ψn

i,k

)

‖ψn
i,k‖2

≥ d2j(d/2+1) min
l∈Λj

∑

p∈Λj

gp,ly
n
j,p (58)

∑d
m=1 πn

j

(
ψm

i,k

∂(yn
j

T Φn
j )

∂xm
ψn

i,k

)

‖ψn
i,k‖2

≤ d2j(d/2+1) max
l∈Λj

∑

p∈Λj

gp,ly
n
j,p (59)

On the other hand, using Stokes’s theorem, under zeroth Dirichlet boundary
conditions, we have obtain

d∑
m=1

∫

Ω

∂|ψn
i,k|2

∂xm
dx =

∫

Γ

|ψn
i,k|2dΓ = 0.

Therefore, using relation (57), we obtain

∑d
m=1 πn

j

(
ym

j
T Φm

j
∂ψn

i,k

∂xm
ψn

i,k

)

‖ψn
i,k‖2

≈ 0.

Taking
di(yn

j ) = ν22id + d2j(d/2+1) min
l∈Λj

∑

p∈Λj

gp,ly
n
j,p,

we have that

γn
i,j

〈
D̃n

τ,ν;Ψ(yj)ψn
i,k, ψn

i,k

〉
≤

〈
F̃n

τ,ν;Ψ(yj)ψn
i,k, ψn

i,k

〉
≤ Γn

i,j

〈
D̃n

τ,ν;Ψ(yj)ψn
i,k, ψn

i,k

〉
,

with

γn
i,j =

τ + ν22id + d2j(d/2+1) minl∈Λj

∑
p∈Λj

gp,ly
n
j,p

ν22id + d2j(d/2+1) minl∈Λj

∑
p∈Λj

gp,lyn
j,p

and

Γn
i,j =

τ + ν22id + d2j(d/2+1) maxl∈Λj

∑
p∈Λj

gp,ly
n
j,p

ν22id + d2j(d/2+1) minl∈Λj

∑
p∈Λj

gp,lyn
j,p

.

19



Summing up for all n = 1, . . . , d, we have

min
n=1,...,d

γn
i,j

〈
D̃τ,ν;Ψ(yj)ψi,k, ψi,k

〉
≤

〈
F̃τ,ν;Ψ(yj)ψi,k, ψi,k

〉

≤ max
n=1,...,d

Γn
i,j

〈
D̃τ,ν;Ψ(yj)ψi,k, ψi,k

〉
.

Because each element of Xj can be expressed as a linear combination of ψi,k,
we prove that

γj

〈
D̃τ,ν;Ψ(yj)v,v

〉
≤

〈
F̃τ,ν;Ψ(yj)v,v

〉
≤ Γj

〈
D̃τ,ν;Ψ(yj)v,v

〉

holds for all v ∈ Xj , where

γj = min
i=0,...,j

min
n=1,...,d

γn
i,j

Γj = max
i=0,...,j

max
n=1,...,d

Γn
i,j

Thus, we prove that P̃τ,ν;Ψ(yj) = L−1
j D̃τ,ν;Ψ(yj)Lj is a preconditioner for

F̃τ,ν;Ψ(yj) which satisfy the conditions imposed in subsection 4.3 and condition
(54). Furthermore, the condition number of P̃τ,ν;Ψ(yj)−1F̃τ,ν;Ψ(yj) is bounded
by Γj

γj
.

Furthermore, our preconditioner is optimal if minl∈Λj

∑
p∈Λj

gp,ly
n
j,p is closed

to maxl∈Λj

∑
p∈Λj

gp,ly
n
j,p as j increases.

6 Numerical Examples

To confirm the applicability of our approach we present a test example for the
two dimensional case. Numerical examples results were obtained by choosing
the (periodized) Deslauriers-Dubuc interpolating scaling functions of order 2,4
and 6, respectively.

For this purpose, we assume that our exact solution (u, p) = (u1, u2, p) is
given by

u1(x1, x2) = cos(2πx1) sin(2πx2)
u2(x1, x2) = − sin(2πx1) cos(2πx2)

p(x1, x2) = sin(2πx1) sin(2πx2)

which is a sufficiently smooth periodic function on Ω = [0, 1]2. For the kinematic
viscosity and for the time step, we choose ν = 20 and τ = 1, respectively.
Let us remark that our exact solution u satisfy the divergence free condition
(div u = 0).

The exact solution is displayed on the figure 1, the approximation of the u1,
u2, and p and its error approximation are displayed on the figure 2, 3 and 4.
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Figure 1: Exact solution for the Navier-Stokes equations.
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Figure 2: Approximation of u1 for the levels j = 2, 3, 4 and error approximation.
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Figure 3: Approximation of u2 for the levels j = 2, 3, 4 and error approximation.
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Figure 4: Approximation of p for the levels j = 2, 3, 4 and error approximation.

Conclusion: As we can see in the figures 2, 3 and 4, the error approximation
depends on the level and on the order of the wavelets. Hence, the increasing of
the order of the Deslauriers-Dubuc wavelets provides us to get better accurate
results.
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