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ABSTRACT. The topic of this article is a generalization of the theory of coorbit spaces and related
frame constructions to Banach spaces of functions or distributions over domains and manifolds.
As a special case one obtains modulation spaces and Gabor frames on spheres. Group theoretical
considerations allow first to introduce generalized wavelet transforms. These are then used to
define coorbit spaces on homogeneous spaces, which consist of functions having their generalized
wavelet transform in some weighted Lp space. We also describe natural ways of discretizing those
wavelet transforms, or equivalently to obtain atomic decompositions and Banach frames for the
corresponding coorbit spaces. Based on these facts we treat aspects of nonlinear approximation
and show how the new theory can be applied to the Gabor transform on spheres. For the S1 we
exhibit concrete examples of admissible Gabor atoms which are very closely related to uncertainty
minimizing states.

1. Introduction

In this article, we study the problem of analyzing functions on the sphere by means of
Gabor frames. To analyze a given signal, the first step is always to decompose it into
suitable building blocks. These building blocks depend on the given situation, they may
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consist of the elements of an (orthonormal) basis, of a frame, or even of the elements of huge
dictionaries. At first sight, an orthonormal or more general a Riesz basis seems to be the
most promising choice since then the representation of the signal is unique and usually very
fast decomposition and reconstruction algorithms are available. However, in recent studies,
it has turned out that the Riesz basis setting is very often not flexible enough. Indeed, when
dealing with complicated domains or manifolds, such a suitable Riesz basis might not exist
or it might suffer from serious problems such as a lack of numerical stability. Moreover,
in other applications such as in Gabor analysis a Balian-Low theorem [15] prohibits the
existence of a good basis.

One way to overcome these difficulties is to work with a weaker concept, i.e., to work
with frames. Frames provide stable and usually redundant nonorthogonal expansions in a
Hilbert space H. In general, a countable set of elements {ei}i∈Z is called a frame if there
exist constants 0 < A1 ≤ A2 < ∞ such that

A1‖f ‖2
H ≤

∑
i∈Z

|〈f, ei〉H|2 ≤ A2‖f ‖2
H .

Recent studies indeed indicate that frames on domains and manifolds are much easier
to construct than a Riesz basis, see, e.g., [3, 4, 17]. In this overview article, we are especially
interested in the construction of Gabor frames on a very prominent manifold, the sphere.
The approach presented here has been introduced and discussed in its full generality in [3,
4, 5]. It is essentially based on square integrable group representations and generalizes
the well-known coorbit space theory developed by Feichtinger and Gröchenig in a series
of articles, e.g., [8, 9, 10, 11, 14]. The important Feichtinger-Gröchenig theory has the
following advantages:

• The theory is universal in the following sense: Given a Hilbert space H and a
square integrable representation of a group G, the whole abstract machinery can
be applied.

• The approach provides us with natural families of smoothness spaces, the coorbit
spaces. They are defined as the collection of all elements in the Hilbert space H for
which the voice transform associated with the group representation has a certain
decay. In many cases, e.g., for the affine group and the Weyl-Heisenberg group,
these coorbit spaces coincide with classical smoothness spaces such as Besov and
modulation spaces, respectively.

• The Feichtinger-Gröchenig theory does not only give rise to Hilbert frames in H,
but also to frames in scales of the associated coorbit spaces. Moreover, not only
Hilbert spaces, but also Banach spaces can be handled. It is important to note that
the theory provides us with universal construction methods, that is all the building
blocks (e.g., the synthesis operators) are the same for the whole scale of spaces.

• The discretization process that produces the frame does not take place on the
manifold (which might look ugly and complicated), but on the Lie group at hand
(which is usually a more handy object), and is transported to the manifold by the
group representation.

So far, the Feichtinger-Gröchenig theory is well-established for problems on the whole
Euclidean plane. In view of the advantages stated above, it seems to be quite natural to apply
this approach also to compact manifolds such as the spheres. However, then one is usually
faced with the following problem: In many cases, there exist group representations, but
they are not square integrable since the groups are ‘too large’ with respect to the manifold.
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Therefore it is necessary to make the group ‘smaller’ which can be performed by factoring
out a suitable subgroup. Then one has to work with coset spaces. This might cause serious
problems since usually the group structure gets lost. Nevertheless, in a small series of
articles [3, 4, 5] we have shown that a generalization of the Feichtinger-Gröchenig theory
to representations of quotient spaces is indeed possible.

In this article, we present the basic steps of this construction. Special emphasis is laid
on the application to the spheres. We show that by combining our approach with the local
Fourier transform on the spheres as introduced by Torressani [18], one obtains generalized
modulation spaces on the spheres and atomic decompositions and Banach frames for these
scales of spaces. We recall the principle ideas without going into details, but nevertheless
the proofs of the central Theorems 3 and 4 that provide us with atomic decompositions and
Banach frames, respectively, are briefly sketched. We also discuss a new aspect of construct-
ing atomic decompositions and Banach frames on spheres, namely uncertainty relations.
Given a square integrable group representation, one obtains a set of self-adjoint differential
operators by taking the derivatives of the representation at the identity element. Then any
pair of these operators gives rise to ‘spherical’ Heisenberg uncertainty principles, and those
vectors that minimize the uncertainty can be interpreted as canonical analyzing atoms.

This article is organized as follows. In Section 2, we briefly review the group theoret-
ical background and introduce the generalized wavelet transform. In Section 3, we define
associated coorbit spaces and state the basic correspondence principle. The main results
are then given in Section 4. In this section we formulate conditions for the existence of
atomic decompositions and Banach frames. After having established decomposition (and
therewith approximation) principles, the next natural goal is to determine the quality of
approximation. This is the topic of Section 5. As the special focus of this article, we con-
sider in Section 6 the application of the general theory to the construction of local Gabor
frames and associated modulation spaces on spheres. As a new aspect, we state related
uncertainty principles for the local Fourier transform on the sphere S1 and compute the
corresponding minimizing states in Section 6.2. Since these minimizing states do not meet
all the conditions of the proposed coorbit theory, we suggest a reasonable approximation.

2. Square Integrable Representations Modulo Subgroups

LetGbe a locally compact group with left Haar measure ν and let U be a strongly continuous,
unitary representation of G on a separable Hilbert space H. We say that U is square
integrable if there exists ψ ∈ H\{0} such that∫

G

|〈ψ,U(g)ψ〉H|2 dν(g) < ∞ .

For the classical integral transforms like the short time Fourier transform and the wavelet
transform related to the reduced Weyl-Heisenberg-group and the affine group, respectively,
the representations in question are in fact square-integrable. However, for integral trans-
forms related to group representations on L2-spaces on manifolds, for example, on the
sphere, square integrability usually fails to hold. In other words, the corresponding group
is too large.

A way to overcome this fact is to factor out a suitable closed subgroup H . In this
way, we restrict the representation to a quotientX := G/H which always admits a strongly
quasi-invariant measure. Since in general the representation is not directly defined onX we
need to introduce a section σ : X → G which assigns to each coset a point lying in it. In
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other words, if � : G → X denotes the canonical projection then � ◦ σ = Id. It is always
possible to choose a measurable section or even a continuous one on some dense open
subset of X. In many examples the section will be continuous. For technical reasons we
assume further that G and, hence, also X = G/H is σ -compact. A unitary representation
U of G on H is called square-integrable modulo (H, σ ) if there exists a function ψ ∈ H
such that the self-adjoint operator Aσ : H → H weakly defined by

Aσf :=
∫
X

〈f,U(σ (x))ψ〉H U(σ (x))ψ dµ(x) ,

is bounded and has a bounded inverse A−1
σ . The function ψ is called admissible. If Aσ

is a multiple of the identity then ψ is called strictly admissible. In this article, we restrict
our attention to the strictly admissible setting, where Aσ = Id. More general operators Aσ
were considered in [5].

The wavelet transform Vψ : H → L2(X) is defined by

Vψf (x) := 〈f,U(σ (x))ψ〉H, x ∈ X . (2.1)

Note that the set Sσ := {U(σ (x))ψ : x ∈ X} is total in H, i.e., S⊥
σ = {0}. Based on the

wavelet transform we introduce the Hermitian kernel

Rψ(x, y) = Vψ(U(σ (x))ψ)(y) = 〈U(σ (x))ψ,U(σ (y))ψ〉H . (2.2)

Then Vψ gives rise to the following correspondence between H and the reproducing kernel
Hilbert space

M2 := {F ∈ L2(X) : 〈F,Rψ(x, ·)〉 = F(x) a.e.} .
Theorem 1 (Correspondence between H and M2). Let U be a square integrable repre-
sentation ofGmod (H, σ ) with a strictly admissible function ψ . Suppose that Vψ and Rψ
are defined by (2.1) and (2.2), respectively. ThenVψ is a bijection of H onto the reproducing
kernel Hilbert space M2.

For a proof see, e.g., [1, Theorem 7.3.1]. Furthermore, Vψ is an isometry such that
it can be inverted on its range by its adjoint V ∗

ψ . For f ∈ H, we have the reconstruction
formula f = V ∗

ψVψf .

3. Weighted Coorbit Spaces on Homogeneous Spaces

We want to extend our consideration fromL2(X) to more general weightedLp-spaces. For
some positive, measurable weight function v on X and 1 ≤ p ≤ ∞, let

Lp,v(X) := {f measurable : f v ∈ Lp(X)}
with ‖f ‖Lp,v := (∫

X
|f (x)|pv(x)p dµ(x))1/p, 1 ≤ p < ∞ and ‖f ‖L∞,v :=

ess sup
x∈X

|f (x)|v(x).

The spaces H1,w and H′
1,w. First we need to provide a suitable large reservoir for the

objects of our coorbit spaces. To this end, let w be some weight function on X satisfying
w(x) ≥ 1 for all x ∈ X. Throughout this article, we impose the fundamental condition

ess sup
y∈X

∫
X

|Rψ(x, y)|w(x)
w(y)

dµ(x) < ∞ . (3.1)
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By the Generalized Young Inequality in Theorem A.1, this implies that Rψ(x, ·) =
Vψ(U(σ (x))ψ) is in L1,w and that the map F �→ 〈F,Rψ(x, ·)〉 is continuous on L1,w.
Then the linear space

H1,w := {f ∈ H : Vψ(f ) ∈ L1,w(X)}
together with the norm ‖f ‖H1,w := ‖Vψf ‖L1,w becomes a Banach space which is contin-
uously embedded in H. In particular, since Rψ(x, ·) ∈ L1,w(X) we see that U(σ(x))ψ ∈
H1,w. Introducing the dual space H′

1,w of H1,w we have the continuous embeddings
H1,w ⊂ H ⊂ H′

1,w, where H1,w is norm dense in H and H is weak-∗ dense in H′
1,w. In

other words, (H1,w,H,H′
1,w) forms a Gelfand triple. Now the operatorVψ can be extended

to an operator on H ′
1,w by

Vψf (x) := 〈f,U(σ (x))ψ〉H ′
1,w×H1,w

.

By (3.1), we see that Vψ : H′
1,w → L∞,1/w(X) is a continuous operator. Then an operator

Ṽψ can be weakly defined on L∞,1/w(X) by

〈
ṼψF, g

〉
H′

1,w×H1,w
:= 〈F, Vψg〉 for all g ∈ H1,w .

It can be shown that Ṽψ is a bounded operator on L∞,1/w(X) and we obtain for F ∈
L∞,1/w(X)

VψṼψF (x)=
〈
ṼψF,U(σ (x))ψ

〉
H′

1,w×H1,w
=〈F, Vψ(U(σ (x))ψ)〉=〈F,Rψ(x, ·)〉 . (3.2)

Weighted coorbit spaces. Now we introduce the weighted coorbit spaces. To this end,
let v be a positive measurable weight function onX. We impose the fundamental conditions

ess sup
y∈X

∫
X

|Rψ(x, y)|v(x)
v(y)

dµ(x)<∞ , ess sup
x∈X

∫
X

|Rψ(x, y)|v(x)
v(y)

dµ(y)<∞ . (3.3)

By the Generalized Young Inequality in Theorem A.1, this implies that F �→ 〈F,Rψ(x, ·)〉
is continuous onLp,v(X). Additionally, we require that the weight functionw is associated
to v in the sense that {〈F,Rψ(x, ·)〉 : F ∈ Lp,v} ⊂ L∞,1/w. In [5] natural weight functions
w associated to v are proposed. In particular, we can chosew = 1 if v ≥ 1. For 1 ≤ p ≤ ∞,
we define the weighted coorbit spaces

Hp,v := {
f ∈ H′

1,w : Vψf ∈ Lp,v(X)
}

with norms ‖f ‖Hp,v
:= ‖Vψf ‖Lp,v . The spaces (Hp,v, ‖·‖Hp,v

) are Banach spaces. Under
mild additional conditions it can be shown that Hp,v does not depend on the choice of ψ .

Correspondence principle. The basic ingredient in the coorbit theory is a correspon-
dence principle between the spaces Hp,v and certain subspaces of functions on X, which
are defined by means of the reproducing kernel Rψ . For 1 ≤ p ≤ ∞ and Rψ with
property (3.3), let

Mp,v := {F ∈ Lp,v(X) : 〈F,Rψ(x, ·)〉 = F(x) a.e.} .
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Theorem 2 (Correspondence between Hp,v and Mp,v). Let ψ ∈ H be given such that
the corresponding kernel Rψ satisfies (3.3). Then, Vψf ∈ Mp,v , i.e.,

〈Vψf,Rψ(x, ·)〉 = Vψf (x), f ∈ Hp,v .

Conversely, for every F ∈ Mp,v , 1 ≤ p ≤ ∞, there exists a uniquely determined element
f ∈ Hp,v such that F = Vψf .

By Theorem 2 and (3.2) we see that VψṼψ is the identity on Mp,v . Since we have
for f ∈ Hp,v that Vψf ∈ Mp,v it follows VψṼψVψf = Vψf . Now Vψ is injective on
H′

1,w so that ṼψVψ is the identity on Hp,v .

4. Atomic Decompositions and Banach Frames

In this section we show that judicious discretizations of the continuous wavelet transform
give rise to atomic decompositions and Banach frames of the form {U(σ (xi))ψ : xi ∈ X}
for weighted coorbit spaces.

Discretizations. A major tool is that of a bounded uniform partition of unity which we
adapt to homogeneous spaces. A sequence (xi)i∈I ⊂ X is calledU -dense if

⋃
i∈I σ (xi)U ⊃

σ(X) for some relatively compact neighborhood U of e ∈ G with nonvoid interior and
it is called relatively separated, if supj∈I #{i ∈ I : σ(xi)L ∩ σ(xj )L �= ∅} ≤ CL
for all compact subsets L ⊂ G. It can be proved that there exist relatively separated
and U -dense sequences (xi)i∈I ⊂ X for all (σ -compact) locally compact groups G, all
closed subgroups H and all relatively compact neighborhoods U ⊂ G of e ∈ G with
nonvoid interior.

It is standard to construct a bounded partition of unity corresponding to some U -
dense and relatively separated sequence (xi)i∈I , i.e., a sequence of (continuous) functions
φi, i ∈ I , on G such that

(a) 0 ≤ φi(g) ≤ 1 for all g ∈ G,

(b) supp φi ⊂ σ(xi)U ,

(c)
∑
i∈I φi(σ (x)) = 1 for all x ∈ X.

We introduce the subsets Xi := {x ∈ X : σ(x) ∈ σ(xi)U}. Clearly, these sets form a
covering of X with uniformly finite overlap. In order to carry through the discretization
machinery we require for the weight function v that

v(x)

v(y)
≤ D for all x, y ∈ Xi, i ∈ I (4.1)

for some constant D < ∞ independent of i ∈ I . In the terminology of Feichtinger and
Gröbner [12] this means that v is moderate with respect to the covering {Xi}i∈I .

For simpler notation, we introduce the numbers ai := µ(Xi). Let �p,va1/p denote
the space of sequences over I for which

‖(ηi)i∈I‖�
p,va1/p := ∥∥(ηiv(xi)a1/p

i

)
i∈I
∥∥
�p(I )

< ∞ .

Clearly, if (ai)i∈I is bounded from above and below then �p,va1/p = �p,va1/p−1 = �p,v with
equivalent norms. In particular, this is the case if Xi = σ(xi)�(U).
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Atomic decompositions. For some relatively compact set U , we introduce the kernel
oscU dependent on ψ

oscU(x, y) := sup
u∈U

∣∣〈U(σ (x))(Id − U(u−1))ψ.U(σ (y))ψ 〉∣∣ .
The first theorem is a decomposition theorem which says that discretizing the representation
by means of a U -dense set indeed produces an atomic decomposition of Hp,v .

Theorem 3. Let G be a locally compact group with closed subgroup H and let v be a
weight function on X = G/H . Further, let U be a square integrable representation of G
mod (H, σ ) with strictly admissible function ψ . Assume that the kernel Rψ fulfills (3.3)
and (3.1) with a weight w(x) ≥ 1 associated to v. Let a relatively compact neighborhood
U of the identity in G be chosen such that∫

X

oscU(y, x)
v(x)

v(y)
dµ(x) ≤ γ and

∫
X

oscU(y, x)
v(x)

v(y)
dµ(y) ≤ γ , (4.2)

where γ < 1. Let (xi)i∈I be a U -dense, relatively separated family and assume that v
satisfies (4.1). Then Hp,v , 1 ≤ p ≤ ∞, has the following atomic decomposition: If
f ∈ Hp,v , 1 ≤ p ≤ ∞, then f can be represented as

f =
∑
i∈I

ciU(σ (xi))ψ , (4.3)

where the sequence of coefficients (ci)i∈I = (ci(f ))i∈I ∈ �p,va1/p−1 depends linearly on f
and satisfies

||(ci)i∈I ||�
p,va1/p−1 ≤ A||f ||Hp,v

. (4.4)

If (ci)i∈I ∈ �p,va1/p−1 , then f = ∑
i∈I ciU(σ (xi))ψ is contained in Hp,v and

||f ||Hp,v
≤ B||(ci)i∈I ||�

p,va1/p−1 . (4.5)

Banach frames. Given such an atomic decomposition, the problem arises under which
conditions a function f is completely determined by its moments, given by 〈f,
U(σ (xi))ψ〉H′

1,w×H1,w
, and how f can be reconstructed from these moments. This question

is answered by the following theorem which shows that {ψi := U(σ (xi))ψ : i ∈ I } indeed
gives rise to a Banach frame.

Theorem 4. Impose the same assumptions as in Theorem 3 with∫
X

oscU(x, y)
v(x)

v(y)
dµ(x) ≤ γ̃

Cψ
and

∫
X

oscU(x, y)
v(x)

v(y)
dµ(y) ≤ γ̃

Cψ
, (4.6)

where γ̃ < 1, instead of (4.2).
Then the set

{ψi := U(σ (xi))ψ : i ∈ I }
is a Banach frame for Hp,v . This means that

(i) f ∈ Hp,v if and only if (〈f,ψi〉H′
1,w×H1,w

)i∈I ∈ �p,va1/p ;

(ii) there exist two constants 0 < A′ ≤ B ′ < ∞ such that

A′ ‖f ‖Hp,v
≤ ∥∥(〈f,ψi〉H′

1,w×H1,w

)
i∈I
∥∥
�
p,va1/p

≤ B ′ ‖f ‖Hp,v
;

(iii) there exists a bounded, linear reconstruction operator S from �p,va1/p to Hp,v

such that S((〈f,ψi〉H′
1,w×H1,w

)i∈I
) = f .
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Approximation operators. Let us briefly explain the basic concept of the proofs of The-
orems 3 and 4. The main ingredient is that the operator which maps F ∈ Mp,v onto
the function 〈F,Rψ(x, ·)〉 is the identity on Mp,v . The idea now is to approximate this
operator which is given by an integral by a sum. As in [4, 5] we use the following two
approximation operators

TφF(x) :=
∑
i∈I

〈F, φi ◦ σ 〉Rψ(xi, x)

=
∑
i∈I

∫
X

F(y)φi(σ (y)) dµ(y)Rψ(xi, x) ,

SφF (x) :=
∑
i∈I

F (xi)〈φi ◦ σ,Rψ(x, ·)〉

=
∑
i∈I

∫
X

F(xi)φi(σ (y))Rψ(y, x) dµ(y) .

We have to prove that these operators are invertible under certain conditions, see Theorem 5
below. Then the correspondence principle (Theorem 2) combined with the operators Tφ
and Sφ yields an atomic decomposition and a Banach frame, respectively.

We shall only briefly explain how the operator Tφ can be used to obtain the atomic
decomposition (4.3). For a detailed discussion on the operator Sφ we again refer to [4, 5].
Assume f ∈ Hp,v so thatVψf ∈ Lp,v . If the operator Tφ is boundedly invertible, we obtain

Vψf (x) = TφT
−1
φ Vψf (x) =

∑
i∈I

〈
T −1
φ Vψf, φi ◦ σ 〉Rψ(xi, x) . (4.7)

Since Rψ(xi, x) = Vψ(U(σ(xi)ψ))(x) and ṼψVψ is the identity on Hp,v , Equation
(4.7) yields

f = Ṽψ

(∑
i∈I

ci(f )VψU(σ(xi))ψ

)

with ci(f ) := 〈T −1
φ Vψf, φi ◦ σ 〉. As Ṽψ is continuous on Hp,v , we obtain

f =
∑
i∈I

ci(f )U(σ(xi))ψ .

For the proof of the frame bounds (4.4), (4.5) we refer again to [4, 5].

Theorem 5.
(i) Suppose that there exists γ < 1 such that (4.2) holds. Then ‖Id − Tφ‖Mp,v→Mp,v

≤
γ < 1. In particular, Tφ is bounded with bounded inverse.

(ii) Suppose that R fulfills (3.3) and that there exists γ̃ < 1 such that (4.6) holds where Cψ
is the constant in (3.3). Then ‖Id − Sφ‖Mp,v→Mp,v

≤ γ̃ < 1. In particular, Sφ is bounded
with bounded inverse.

Proof. We only sketch the proof of part (i), the second part can be proved analogously.
Using the reproducing formula on Mp,v and the fact that (φi ◦ σ)i∈I is a partition of unity
on X we obtain for F ∈ Mp,v

F (x) =
∫
X

F(y)Rψ(x, y) dµ(y) =
∑
i∈I

∫
X

F(y)φi(σ (y))Rψ(y, x) dµ(y) .
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It follows immediately that

F(x)− TφF(x) =
∑
i∈I

∫
X

F(y)φi(σ (y))[Rψ(y, x)− Rψ(xi, x)] dµ(y) .

By definition of R we obtain

|F(x)− TφF(x)| ≤
∑
i∈I

∫
X

|F(y)|φi(σ (y)) |Rψ(y, x)− Rψ(xi, x)| dµ(y)

=
∑
i∈I

∫
X

|F(y)|φi(σ (y))
∣∣〈(U(σ (y))− U(σ (xi))

)
ψ,U(σ (x))ψ 〉∣∣ dµ(y) .

Since supp φi ⊂ σ(xi)U we are only interested in those y ∈ X such that σ(y) ∈ σ(xi)U
which implies σ(y) = σ(xi)u for some u ∈ U or equivalently σ(xi) = σ(y)u−1. Hence,
we have

|F(x)− TφF(x)|
≤
∑
i∈I

∫
X

|F(y)|φi(σ (y)) sup
u∈U

∣∣〈(U(σ (y))− U(σ(y)u−1))ψ,U(σ (x))ψ 〉∣∣ dµ(y)
=
∑
i∈I

∫
X

|F(y)|φi(σ (y)) oscU(y, x) dµ(y) =
∫
X

|F(y)| oscU(y, x) dµ(y) .

By (4.2) and the generalized Young inequality, see Theorem A.1, we obtain

‖F − TφF‖Mp,v
= ‖(Id − Tφ)F‖Mp,v

≤ γ ‖F‖Mp,v
.

Hence, ‖Id − Tφ‖Mp,v→Mp,v
≤ γ < 1 and thus Tφ is boundedly invertible on Mp,v .

5. Nonlinear Approximation

The established atomic decomposition can now be used to decompose, to approximate and
to analyze certain functions on Hp,v . Then it is clearly desirable to determine the quality of
certain approximation schemes based on our atomic decomposition, i.e., the approximation
order comes into play. In this section, we are interested in the quality of the best N -term
approximation. We restrict ourselves to the case where the sequence (ai)i∈I is bounded
from below and from above. This is the case if the measure under consideration is invariant
and not only quasi-invariant. Fortunately, for the application we have in mind this property
is indeed satisfied, see Section 6.1.

The setting can be described as follows. Let {ψi = U(σ(xi))ψ : i ∈ I } denote
the set of atomic functions constructed in the previous section, i.e., we have for any f ∈
Hp,v that

f =
∑
i∈I

ciψi (5.1)

and

‖(ci)i∈I‖�p,v ∼ ‖f ‖Hp,v
. (5.2)
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We want to approximate our functions f ∈ Hp,v by elements from the nonlinear manifolds
	n, n ∈ N, which consist of all functions S ∈ Hp,v whose expansions with respect to our
discrete coherent states have at most n nonzero coefficients, i.e.,

	n :=
{
S ∈ Hp,v : S =

∑
i∈J

biψi, J ⊆ I, cardJ ≤ n

}
.

Then we are interested in the asymptotic behavior of the error

En(f )Hp,v := inf
S∈	n

‖f − S‖Hp,v
.

Usually, the order of approximation which can be achieved depends on the regularity of the
approximated function as measured in some associated smoothness space. For instance, for
nonlinear wavelet approximation, the order of convergence is determined by the regularity
as measured in a specific scale of Besov spaces. For nonlinear approximation based on
Gabor frames, it has been shown in [16] that the ‘right’ smoothness spaces are given by
a specific scale of modulation spaces. It turns out that the result from [16], i.e., an upper
estimate, carries over to our case without any difficulty. The basic ingredient in the proof
of the theorem is the following lemma which has been shown in [16], see also [7].

Lemma 1. Let a = (ai)
∞
i=1 be a decreasing sequence of positive numbers. For p, q > 0

set α := 1/p − 1/q and En,q(a) := (∑∞
i=n a

q
i

)1/q
. Then for 0 < p < q ≤ ∞ we have

2−1/p‖a‖�p ≤
( ∞∑
n=1

(
nαEn,q(a)

)p 1

n

)1/p

≤ C ‖a‖�p

with a constant C > 0 depending only on p.

Now one can prove the following theorem, see also [16].

Theorem 6. Let {ψi : i ∈ I } be a set of atomic functions for Hp,v , 1 ≤ p ≤ ∞, as
constructed by Theorem 3. If 1 ≤ p < q, α := 1/p − 1/q and f ∈ Hp,v , then

( ∞∑
n=1

1

n

(
nαEn(f )Hq,v

)p)1/p

≤ C‖f ‖Hp,v

for a constant C < ∞.
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Proof.
Let π permutate the sequence (ci)i∈I in (5.1) in a decreasing order, i.e.,

|cπ(1)v(xπ(1))| ≥ |cπ(2)v(xπ(2))| ≥ . . . . Then we obtain

En(f )Hq,v
≤
∥∥∥∥

∞∑
i=n+1

cπ(i)ψπ(i)

∥∥∥∥
Hq,v

and by (5.2) further that

En(f )Hq,v
≤ C


 ∞∑
i=n+1

|cπ(i)|qv(xπ(i))q



1/q

= C En+1,q(|cπ(i)|v(xπ(i))) ≤ C En,q(|cπ(i)|v(xπ(i))) .
Now we finish by applying Lemma 1 and (5.2)

( ∞∑
n=1

1

n

(
nαEn(f )Hq,v

)p)1/p

≤
( ∞∑
n=1

1

n

(
nα C En,q(|cπ(i)|v(xπ(i)))

)p)1/p

≤ C′ ‖(|cπ(i)|v(xπ(i))))‖�p = C′‖c‖�p,v
≤ C′′ ‖f ‖Hp,v

.

6. Application to the Sphere

In this section, we want to fill our technical consideration with live by deriving a gener-
alized windowed Fourier transform on the spheres Sn−1 and checking that the proposed
construction of weighted modulation spaces and Banach frames works well for this setting.

6.1 Modulation Spaces and Banach Frames

We start by establishing a suitable group representation for the Hilbert space H = L2(S
n−1).

Having the usual windowed Fourier transform generated by translations and modulations in
mind, Torresani suggested in [18] to choose the Euclidean groupG := E(n) = SO(n)�R

n,
with group operation

(R, p) ◦ (R̃, p̃) = (
R̃R, R̃p + p̃

)
, (R, p)−1 = (

R−1,−R−1p
)
.

As a natural analogue to the Schrödinger representation of the Weyl-Heisenberg group on
L2(R

n), we can define the continuous unitary representation

U(R, p)f (s) := e−i<Rs,p>f (Rs) , s ∈ Sn−1

of G on H. Since this representation is not square integrable, we are looking for suitable
representations modulo a subgroup H of G.

In order to keep the notation simple, we restrict ourselves to the case H = L2(S
1) ∼=

L2([−π, π ]). In this setting, R ∈ SO(2) and s ∈ S1 are given explicitly by

R =
(

cos θ sin θ
− sin θ cos θ

)
, s =

(
sin γ
cos γ

)
.
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To overcome the integrability problem, we use the subgroup H := {(0, 0, p2) : p2 ∈ R}
of G together with the flat section σ(θ, p1) := (θ, p1, 0). Then X := G/H carries the G-
invariant measure dµ(x) = dpx dθx , where x = (θx, px, 0). In this case, the representation
reads as

U(σ (θ, p1))f (γ ) = e−i sin(γ+θ)p1f (γ + θ) . (6.1)

The following lemma ensures strictly square integrability of U mod (H, σ ).

Lemma 2. Assume that the functionψ ∈ L2([−π, π ]) is such that supp ψ ⊂ [−π/2, π/2]
and

2π

π/2∫
−π/2

|ψ(γ )|2
cos γ

dγ = 1 .

Then the map Vψ defined by (2.1) is an isometry.

The proof in [18] uses that

Vψf (x) = 〈U(σ(x)−1)f,ψ 〉 =
π/2∫

−π/2
eipx sin γ f (γ − θx)ψ̄(γ ) dγ .

As a consequence of the theorem, the wavelet transform can be inverted by using the
adjoint V ∗

ψ . Of course the approach works also if

0 < cψ := 2π

π/2∫
−π/2

|ψ(γ )|2
cos γ

dγ < ∞ . (6.2)

Then the inverse of the wavelet transform is given by V ∗
ψ/

√
cψ .

In the following, we choose the admissible function

ψ(γ ) = cos6 γ · χ[−π/2,π/2](γ ) .

For x = (θx, px, 0), y = (θy, py, 0) ∈ X and θ = θx−θy we see as in [3] that the kernelRψ
can be rewritten as

Rψ(y, x) = F̂θ,py (−px) ,
where

Fθ,py (t) := e−ipy sin(arcsin t−θ)ψ(arcsin t − θ)ψ(arcsin t)/
√

1 − t2 .

The plots of |Rψ(x, y)| = |F̂θ,py (−px)| for two values of θ in Figure 1 describe the typical
decay behavior of Rψ .

In analogy to the classical modulation spaces on the Euclidean plane, we consider
specific weight functions of the form v(θ, p1) = (1 + |p1|)s , s > 0 i.e., the modulation
spaces are generalized Bessel-potential spaces. To v we associate w = 1. In order to
construct properly defined weighted modulation spaces we have to establish the fundamental
properties (3.3) of our kernel Rψ . To this end, we use that

∫
X

|R(x, y)|w(x)
w(y)

dµ(x) =
π∫

−π

∫
R

∣∣F̂θ,py (px)∣∣ (1 + |px |)s
(1 + |py |)s dpx dθx .
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FIGURE 1 Left: |F̂θ,py (−px)| for θ = −2.642, right: |F̂θ,py (−px)| for θ = 1.758.

Regarding that the outer integration is over a finite interval it remains to check that

∫
R

∣∣F̂θ,py (px)∣∣ (1 + |px |)s
(1 + |py |)s dpx ≤ C, and

∫
R

∣∣F̂θ,py (px)∣∣ (1 + |px |)s
(1 + |py |)s dpy ≤ C (6.3)

with some constants C independent of θ and py and px , respectively.
These properties are confirmed numerically and the results are presented in the Fig-

ures 2–4 for s = 0.5. Figure 2 shows the approximated values of
∫

R
|F̂θ,py (px)|(1 +

|px |)0.5/(1 + |py |)0.5 dpx as functions of py and Figure 3 the approximated values of∫
R

|F̂θ,py (px)|(1+|px |)0.5/(1+|py |)0.5 dpy as functions ofpx . Finally, in Figure 4, we have

displayed maxpy
∫ |F̂θ,py (px)(1 + |px |)0.5/(1 + |py |)0.5dpx and maxpx

∫ |F̂θ,py (px)(1 +
|px |)0.5/(1 + |py |)0.5 dpy for all θ ∈ [−π, π ]. These results clearly show that condi-
tions (6.3) are satisfied.
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FIGURE 2
∫
R

|F̂θ,py (px)|(1 + |px |)0.5/(1 + |py |)0.5 dpx, left: θ = 2.642, right: θ = 1.758.

For the construction of Banach frames in Mp,v we choose the neighborhood U :=
[−π/N, π/N ] × [−π/M,π/M] × [−π/M,π/M] of the identity and a U -dense set
(xn,m)(n,m)∈I with xn,m = (θn, pm, qm). Then the assumptions concerning oscU in Theo-
rem 3 and Theorem 4, respectively, can be verified directly by slightly modifying the steps
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∫
R

|F̂θ,py (px)|(1 + |ph|)0.5/(1 + |py |)0.5 dpy, left: θ = 2.642, right: θ = 1.758.

−3 −2 −1 0 1 2 3

0.5

1

1.5

2

2.5

3

3.5

4

−3 −2 −1 0 1 2 3

0.5

1

1.5

2

2.5

3

3.5

4

FIGURE 4 Maximum plot for all θ ∈ [−π, π ]; left: maxpy
∫
R

|F̂θ,py (px)|(1 + |px |)0.5/(1 + |py |)0.5 dpx ,

right: maxpx
∫
R

|F̂θ,py (px)|(1 + |px |)0.5/(1 + |py |)0.5 dpy .

in [3] with respect to the additional weight function.

6.2 Time-Frequency Localized Analyzing Atmos

A general theorem which is well-known in quantum mechanics and harmonic analysis [13]
relates an uncertainty principle to any two self-adjoint operators and provides a mechanism
for deriving a minimizing function for the uncertainty relation. Before repeating this well-
known result on uncertainties, let us fix some notation. Let A1, A2 be two self-adjoint
operators. Their commutator is defined by

[A1, A2] := A1A2 − A2A1 ,

the expectation of some operator A1 with respect to some state ϕ ∈ dom(A1), with ‖ϕ‖ =
1, by

µ(A1) := µA1 := 〈A1ϕ, ϕ〉
and, finally, the variance of A1 with respect to some state ϕ ∈ dom(A1) by

(�A1)
2 := µ

(
(A1 − µ(A1))

2) .
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Theorem 7. Given two self-adjoint operators A1 and A2, then for all ϕ ∈ dom(A1) ∩
dom(A2) they obey the uncertainty relation:

�A1�A2 ≥ 1

2
|〈[A1, A2]〉| , (6.4)

where |〈[A1, A2]〉| := |〈[A1, A2]ϕ, ϕ〉|. A stateψ is said to have minimal uncertainty if the
above inequality turns into an equality. This happens iff there exists an λ ∈ iR such that

(A1 − µA1)ϕ = λ(A2 − µA2)ϕ . (6.5)

Suppose that we are given a unitary representation of a Lie group. The linearized
operation of the group at the identity element can be described by the infinitesimal genera-
tors of the related Lie algebra. If the group representation is unitary, then the infinitesimal
generators can transformed to be self-adjoint operators. Thus, the general uncertainty
theorem stated above provides a tool for obtaining uncertainty principles using these in-
finitesimal generators. In the case of the Weyl-Heisenberg group, the canonical functions
that minimize the corresponding uncertainty relation are Gaussian functions. The canonical
functions that minimize the uncertainty relations for the affine group in one dimension and
for the similitude group in two dimensions, were the subject of the previous studies [1, 2].

In this section, we want to compute the canonical minimizing states for the local
Fourier transform on the sphere as introduced in Section 6.1. Since we are working with
quotient manifolds, we are usually loosing the group structure, but nevertheless, in the
case of the flat section, there is a canonical substitute for the identity element, namely
(θ, p1) = (0, 0). Since the representation is smooth, we may compute the derivatives at
this point to obtain generalized infinitesimal generators.

Theorem 8. The infinitesimal operatorsAθ,Ap1 associated with the local Fourier trans-
form on the sphere are given by

(Aθϕ)(γ ) = iϕ′(γ ), and (Ap1ϕ)(γ ) = sin γ ϕ(γ ) . (6.6)

The state ϕ which is the minimizer of the associated uncertainty is of the form

ϕ(γ ) = cet cos γ−iµθ γ , (6.7)

where t ∈ R, µθ := µAθ , and c has to be chosen that such ‖ϕ‖L2(S
1) = 1.

Proof. Taking the derivatives with respect to θ and p1 in (6.1) and evaluating them at
θ = 0, p1 = 0 leads to

∂

∂θ
U(σ (θ, p1))ϕ|(θ,p1)=(0,0)(γ ) = ϕ′(γ ) ,

∂

∂p1
U(σ (θ, p1))ϕ|(θ,p1)=(0,0)(γ ) = −i sin γ ϕ(γ ) .

These operators are not self-adjoint, but multiplication with the imaginary unit i yields
self-adjoint operators Aθ = i ∂

∂θ
U and Ap1 = i ∂

∂p1
U . This proves (6.6).

The commutator between these two operators is nonzero. By means of Theorem 7, we
may calculate those states that minimize the corresponding uncertainty principle. Indeed,
(6.5) provides us with the differential equation

ϕ′(γ ) = −iϕ(γ ) (λ sin γ − λµp1 + µθ
)
. (6.8)
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Now (6.8) can be solved by separation of variables which leads with λ = it , t ∈ R to

ϕ(γ ) = ce−t cos γ−(iµθ+tµp1 )γ .

However, since we need periodic functions, we necessarily have to choose µp1 = 0. This
proves (6.7).

Unfortunately, the conditions of Lemma 2 and Theorem 8 cannot be satisfied at the
same time, i.e., the minimizing states are not admissible. Nevertheless, we may define
canonical admissible vectors ψ supported on [−π/2, π/2] which fit ϕ in the least squares
sense and fulfill the admissibility condition (6.2). To this end, let us consider the strictly
convex functional

�(ψ) := α

∫ π/2

−π/2
|ψ(γ )|2

cos γ
dγ +

∫ π/2

−π/2
|ψ(γ )− ϕ(γ )|2 dγ , (6.9)

and compute the minimizers.

Theorem 9. The minimizer of the functional �(ψ) is given by

ψ(γ ) = ϕ(γ )
cos γ

cos γ + α
χ[−π/2,π/2](γ ) . (6.10)

Proof. Setting the first variation of (6.9) to zero we obtain the necessary and sufficient
minimum condition

α

∫ π/2

−π/2
ψ(γ )h(γ )ψ(γ )h(γ )

cos γ
dγ

+
∫ π/2

−π/2
{
(ψ(γ )− ϕ(γ ))h(γ )+ h(γ )

(
ψ(γ )− ϕ(γ )

)}
dγ = 0

for all h ∈ L2(S
1) which is satisfied if

α
ψ(γ )

cos γ
= ϕ(γ )− ψ(γ ), i.e., ψ(γ ) = ϕ(γ )

cos γ

cos γ + α
.

Appendix

A. Appendix

The generalized Young inequality for Lp,v is a major tool in our considerations.

Theorem A.1. LetK be some kernel onX×X. We associate toK the integral operator

K(F)(x) :=
∫
X

K(x, y)F (y) dµ(y) .

If K satisfies

ess sup
x∈X

∫
X

|K(x, y)|v(x)
v(y)

dµ(y) ≤ CK < ∞ , (A.1)
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then K is a continuous operator on L∞,v(X). If K satisfies

ess sup
y∈X

∫
X

|K(x, y)|v(x)
v(y)

dµ(x) ≤ CK < ∞ , (A.2)

then K is a continuous operator on L1,v(X). If K satisfies both (A.1) and (A.2) then K is
a continuous operator on Lp,v(X), 1 ≤ p ≤ ∞, and satisfies

‖K(F)‖Lp,v(X) ≤ CK‖F‖Lp,v(X) .
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