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Abstract

This paper is concerned with nonlinear inverse problems where data and solution
are vector valued and, moreover, where the solution is assumed to have a sparse
expansion with respect to a preassigned frame. We especially focus on such problems
where the different components of the solution exhibit a common or so–called joint
sparsity pattern. Joint sparsity means here that the measure (typically constructed
as weighted `1 norms of componentwise `q norms of the frame coefficients) promotes
a coupling of non–vanishing components. Quite recently, an iterative strategy for
linear inverse problems with such joint sparsity constraints was presented. Here
we develop an iterative concept for nonlinear inverse problems with joint sparsity
constraints for which we show convergence and regularization properties. Moreover,
we demonstrate the capabilities of the proposed algorithm in the field of color image
inpainting.
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1 Introduction

We address the problem of computing an approximation to a solution of a nonlinear
operator equation T (x) = y, where T : X → Y is a nonlinear operator between Hilbert
spaces X and Y . Since in many relevant cases only noisy data yδ with ‖yδ − y‖ ≤ δ
are available, we are often faced with the problem of ill-posedness (in the sense of a
discontinuous dependency of the solution on the data) and therefore with regularization
issues. In the last decade, many of the well known regularization methods for linear
inverse and ill-posed problems have been generalized to nonlinear problems incorporating
at most quadratic regularization terms. Quite recently, during the time when highly
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redundant frame expansions and sparsity issues became important, attempts have been
made to involve frame theory and sparsity concepts into linear as well as nonlinear inverse
problems. The first breakthrough was made by Daubechies et.al. [4]. In this paper, the
authors consider linear inverse problems with ‘classical’ sparsity constraints (no mixed or
joint measures), and they have proposed a Landweber iteration with a shrinkage operation
applied in each iteration step. Encouraged by [4], several efforts have been made in order
to provide a theory for more generalized linear settings such as vector valued problems
and the involvement of (highly) redundant dictionaries of frames, see e.g. [1, 17], mixed
smoothness and sparsity and BV constraints, see e.g. [5, 6, 7, 8], and also for nonlinear
problems with sparsity constraints, see [2, 14, 15, 16].

However, when dealing with vector valued problems, most of the recent literature is
addressed to the recovery of sparse scalar functions only. But multi-channel signals may
not only possess sparse frame expansions for each individual channel, but additionally the
different channels may also exhibit joint sparsity pattern. A first result on this new aspect
on joint sparsity in combination with solving linear inverse problems was achieved in [11].
In the present paper, we address the joint sparsity issue when dealing with nonlinear
inverse problems, i.e. we aim to find a minimizer of a functional of the form

Jα(x) = ‖yδ − T (x)‖2
Y + 2αΨ(x) , (1.1)

where Ψ is a suitable sparsity measure (to be specified below) promoting joint sparsity
between all the channels of x, i.e. promoting sort of coupling of non–vanishing compo-
nents of x.

As the main result of this paper we provide an iteration scheme to approach a minimizer of
variational functional (1.1) when Ψ is a suitable measure for joint sparsity. Moreover, we
show norm convergence of the proposed scheme and regularization properties for a-priori
parameter rules. The potential of the proposed iteration is demonstrated in the context of
color image inpainting.

The remaining paper is organized as follows: In Section 2, we explain in detail the
setup of the problem and describe the iteration procedure. In Section 3, we explicitly
compute the necessary conditions for a minimum of (1.1). The result on norm convergence
(convergence towards critical points) is shown in Section 4, whereas in Section 5 we prove
the regularization properties of the proposed scheme. We finish this paper with Section
6 in which numerical results on color image inpainting are shown.

2 Setup of the Problem

2.1 Representation by Frames

Assume we are given a preassigned system of functions {φλ}λ∈Λ ⊂ X for which we may
consider the operator

F : X → `2 via x 7→ {〈x, φλ〉}λ∈Λ

with adjoint

F ∗ : `2 → X via g 7→
∑
λ∈Λ

gλφλ.
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The system {φλ}λ∈Λ is called a frame if there exists constants A, B with 0 < A ≤ B < ∞
such that for all x ∈ X,

A‖x‖2
X ≤

∑
λ∈Λ

|〈x, φλ〉|2 ≤ B‖x‖2
X . (2.1)

The latter condition implies invertibility of F ∗F and ensures thus that each x ∈ X can
be reconstructed from its moments 〈x, φλ〉 or 〈x, (F ∗F )−1φλ〉, i.e. we have∑

λ∈Λ

〈x, (F ∗F )−1φλ〉φλ = F ∗F (F ∗F )−1x = x = (F ∗F )−1F ∗Fx =
∑
λ∈Λ

〈x, φλ〉(F ∗F )−1φλ .

Frames are typically ‘overcomplete’, i.e. for a given x ∈ X, one may find many different
sequences g ∈ `2 such that

x =
∑
λ∈Λ

gλφλ .

A few of them have special properties for which they are preferred, e.g. a sequence with
minimal `2 norm. As mentioned in Section 1, we are interested in sequences that are
sparser than minimum `2 norm sequences. For instance, one may know a priori that x
is a noisy version of a linear combination of φλ with a coefficient sequence with small `p

norm (e.g. for some p < 2). To this end, we have to choose for Ψ in (1.1) an `q sparsity
constraint that promotes the desired sparsity on g.

2.2 Inverse Problem and Joint Sparsity

In order to cast the inverse problem by means of some variational functional close to (1.1),
we firstly have to setup the vector valued structure. To this end, let Xi, i = 1, . . . , n, and
Yj, j = 1, . . . ,m, be Hilbert spaces. For sake of short notation, we introduce Hilbert
spaces

X =
n⊗

i=1

Xi and Y =
m⊗

j=1

Yj

equipped with the usual inner product, i.e. for x, h ∈ X, 〈x, h〉 =
∑n

i=1〈xi, hi〉, with
xi, hi ∈ Xi, and for y, v ∈ Y , 〈x, v〉 =

∑m
j=1〈yj, vj〉, with xj, vj ∈ Yi. Assume now the

data y ∈ Y are related to x ∈ X via the nonlinear relationship T̃ ,

T̃ (x) = y, i.e. (y1, . . . , ym) = T̃ (x1, . . . , xn).

Assume furthermore, for each individual Xi we have a frame {φi
λ}λ∈Λi

, then each xi can
be expressed by

xi =
∑
λ∈Λi

giφi
λ .

To simplify the notation, we suppose the frame {φi
λ}λ∈Λi

to be the same for each Xi (note
that all the results stated below hold true also without this restriction). Thus, we may
naturally define for g ∈ (`2)

n,

T (g) = T (g1, . . . , gn) := T̃ (F ∗g1, . . . , F ∗gn) = T̃ (x1, . . . , xn) . (2.2)

One might consider the following situations that fit into this setting:
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• Nonlinear-Linear mixing: T (g) = T
({∑r

l=1 Al,iF
∗gl
}

i=1,...,n

)
, for linear and bounded

mappings Al,i : Hl → Xi.

Simple cases:

• Nonlinear scalar valued: T (g) = T (g1, . . . , gn) = T (
∑n

i=1 F ∗gi).

• Purely linear: T some linear and bounded operator.

For our purpose of treating vector valued data and solutions, we cast the variational prob-
lem of the inverse problem now as follows: find a vector of sequences g = (g1, . . . , gn) ∈
(`2)

n, where gi = {(gi)λ}λ∈Λ, such that

Jα(g) = ‖yδ − T (g)‖2
Y + 2αΨ(g) (2.3)

is minimized, where Ψ(g) is a constraint promoting joint sparsity of the vector g ∈ (`2)
n.

In order to utilize recent results of [14], it would be preferable to assume Ψ to be some pos-
itive, weakly lower semi–continuous and convex penalty. Then, several important lemmas
and theorems of [14] can then be conveniently applied in this vector valued framework
and only those statements must be proven where the particular structure of Ψ plays a
role. Following the arguments in [11] on joint sparsity, a reasonable measure that forces
a coupling of non–vanishing components is of the form

Ψ(g) =
∑
λ∈Λ

ωλ‖gλ‖p
q , (2.4)

with p ∈ {1, q} and gλ = ((g1)λ, . . . , (g
n)λ) denoting the vector of the n channel compo-

nents for some fixed frame index λ, 1 ≤ q ≤ 2 and ωλ ≥ c > 0. The case p = 1 coincides
with the suggestion in [11]. In order to apply general concepts of convex optimization for
nonlinear inverse problems as elaborated in [14], we have to verify at first that (2.4) is
indeed a weak lower semi–continuous functional.

Lemma 1 Let {xk} be a sequence for which xk ∈ `2 ∩ `1 and xk
`2−→ x. Then x ∈ `1

with ‖x‖`1 ≤ lim infk ‖xk‖`1.

Proof. Given xk = ((xk)1, (xk)2, . . .) ∈ `2∩ `1. Define fk(t) =
∑∞

i=1(xk)iχ(i−1,i](t). Then,

clearly ‖fk‖L1 = ‖xk‖`1 and ‖fk‖L2 = ‖xk‖`2 . Assume now xk
`2−→ x and construct also

some f ∈ L2 with respect to x. Consequently, ‖fk − f‖L2 = ‖xk − x‖`2 → 0. Since
the coefficients of xk converge to the coefficients of x, one has point–wise convergence
of fk towards f and therefore also |fk| → |f | point–wise with ‖|fk|‖L1 = ‖xk‖`1 and
‖|f |‖L1 = ‖x‖`1 . Hence, with Fatou’s Lemma, we have

‖x‖`1 =

∫
|f(t)|dt =

∫
lim |fk(t)|dt ≤ lim inf

∫
|fk(t)|dt = lim inf ‖xk‖`1 .

�

Lemma 2 Let p = 1 and let ω denote the weight sequence {ωλ}λ∈Λ in (2.4), then the
functional Ψ as defined in (2.4) is weakly lower semi–continuous with respect to weighted
sequence space `2,ω.
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Proof. Ψ is obviously convex. Therefore it is enough to show lower semi–continuity.

Assume gi
k

`2,ω−→ gi. Define (xk)λ := ωλ‖(gk)λ‖q and xλ := ωλ‖gλ‖q. Then, xk
`2−→ x.

This is true because

‖xk − x‖2
`2

=
∑
λ∈Λ

(ωλ‖gk‖q − ωλ‖g‖q)
2

≤
∑
λ∈Λ

(ωλ‖gk − g‖q)
2 =

∑
λ∈Λ

ω2
λ

(
n∑

i=1

|(gi
k)λ − (gi)λ|p

)2/p

≤ n2/p

n∑
i=1

∑
λ∈Λ

ω2
λ|(gi

k)λ − (gi)λ|2 = n2/p

n∑
i=1

‖gi
k − gi‖2

`2,ω
→ 0 .

With the help of Lemma 2, it now follows

Ψ(g) =
∑
λ∈Λ

|xλ| = ‖x‖`1 ≤ lim inf
k
‖xk‖`1 = lim inf

k
Ψ(gk) .

�

Lemma 3 Let p = q, then the functional Ψ as defined in (2.4) is weakly lower semi–
continuous with respect to `2.

Proof. Since we do not have the triangle inequality, we prove the statement directly. The
index set Λ is isomorphic to Z. Therefore,

Ψ(g) =
∑
m∈Z

ω̃i

n∑
i=1

|g̃i
m|q ,

where ω̃m and g̃i are re-ordered and re-indexed versions of ωλ and gi
λ. We define the

function f(x) =
∑

m∈Z fm(x) with

fm(x) =

{
0 for x 6∈ (m, m + 1]
fm,i(x) for x ∈ (m,m + 1], i = 1, · · · , n

,

where fm,i(x) is defined by

fm,i(x) =

{
n ω̃m |g̃i

m|q for x ∈ (m + i−1
n

, m + i
n
]

0 elsewhere
. (2.5)

Therefore, ∫
R

f(x) dx =
∑
m∈Z

ω̃m

n∑
i=1

|g̃i
m|q = Ψ(g) .

Analogously we may define a sequence of functions f (k)(x) =
∑

m∈Z f
(k)
m (x) by replacing

g̃i
m with (g̃k)

i
m in (2.5). If now (gi

k)
w−`2−→ gi for i = 1, · · · , n, we have in particular

(gk)
i
λ → (g)i

λ and thus for fixed m, i it follows that ω̃m|(g̃k)
i
m|q → ω̃m|g̃i

m|q as k → ∞.
Consequently, we observe f (k)(x) → f(x) pointwise. With the help of Fatou’s lemma,

Ψ(g) =

∫
R

f(x) dx ≤ lim inf

∫
R

f (k)(x) dx = lim inf Ψ(gk)
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Therefore the basic principles suggested in [13, 14] up to the statements that directly
involve the structure of Ψ (necessary condition for a minimizer, convergence and regu-
larization results) seem to be also adequate when dealing with this special class of joint
sparsity measures.

Summarizing the considerations made above yields the following adjustment of (1.1),

Jα(g) = Jα,q(g) = ‖yδ − T (g)‖2
Y + 2α

∑
λ∈Λ

ωλ‖gλ‖p
q . (2.6)

The general idea for solving the nonlinear inverse problem, i.e. to find a way to approach
a minimizer of (2.6), is to replace (2.6) by a sequence of functionals from which we hope
that they are much easier to treat and that the sequence of minimizers converge to a
critical point of (2.6), at least. To be more concrete, for g ∈ (`2)

n and some auxiliary
a ∈ (`2)

n, we define

Js
α,q(g, a) := Jα,q(g) + C‖g − a‖2

(`2)n − ‖T (g)− T (a)‖2
Y (2.7)

and create an iteration process by:

1. Pick g0 ∈ (`2)
n and some proper constant C > 0

2. Derive a sequence {gk}k=0,1,... by the iteration:

gk+1 = arg min
gk∈(`2)n

Js
α(g, gk) k = 0, 1, 2, . . . (2.8)

In order to ensure norm convergence of the iterates gk and regularization properties,
we have to restrict ourselves to a class of nonlinear problems for which the following
requirements hold true,

gk
w→ g =⇒ T (gk) → T (g) ,

T ′(gk)
∗z → T ′(g)∗z , for all z , (2.9)

‖T ′(g)− T ′(g′)‖Y ≤ L‖g − g′‖(`2)n .

The latter requirements exhibit no significant restriction of the proposed approach and are
of common use the literature. In particular, they characterize continuity and smoothness
properties of T and T ′, respectively.

3 Minimization of the Surrogate Functional

Since a very similar functional (up to the structure of Ψ) was under consideration in [14],
we just review the basic properties and refer the interested reader to [14] for proofs and
rigorous arguments. Then, for the computation of the necessary condition for a min-
imum of Js

α,q (as defined in (2.7)), the specific structure of Ψ comes into play. At this
point, the coupling of the frame coefficients via the `q–norm becomes an important aspect.
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Let us start by reviewing some basic properties of our functional. Assume, we are
given some α > 0 and some initial g0 ∈ (`2)

n, then we may define a ball

Kr := {g ∈ (`2)
n : Ψ(g) ≤ r} ,

for which the radius r is determined by

r := Jα,q(g0)/(2α) , (3.1)

ensuring g0 ∈ Kr. As the most important ingredient in the definition of (2.7), we define
the constant C,

C := 2B2 max

{(
sup
g∈Kr

‖T ′(g)‖
)2

, L
√
‖yδ − T (g0)‖2 + 2αΨ(g0)

}
, (3.2)

where L is the Lipschitz constant of the Fréchet derivative of T . We suppose that g0 was
chosen such that r < ∞ and C < ∞.

Lemma 4 Let r and C be chosen by (3.1), (3.2). Then, for all g ∈ Kr,

C‖g − g0‖2
(`2)n − ‖T (g)− T (g0)‖2

Y ≥ 0 (3.3)

and thus, Jα,q(g) ≤ Js
α,q(g, g0).

The proof essentially relies on the Taylor expansion of T ,

T (g + h) = T (g) +

1∫
0

T ′(g + τh)h dτ

and can be retraced, e.g., from [14]. Moreover, one has

Proposition 5 Let g0, α be given and r, C be defined by (3.1), (3.2). Then the functionals
Js

α,q(g, gk) are bounded from below for all k ∈ N and have thus minimizers. For the
minimizer gk+1 of Js

α,q(g, gk) holds gk+1 ∈ Kr.

As an immediate consequence we have

Corollary 6 The sequences of functional values {Jα,q(gk)}k∈N and {Js
α,q(gk+1, gk)}k∈N

are non-increasing.

In the next lemma, we characterize a minimizer of the functional Js
α,q(g, a) by means of

the necessary condition for which it can be shown that it can be cast as a fixed point
equation with contractive fixed point map. The associated fixed point iteration can be
understood as an inner iteration of iteration (2.8) in order to derive the iterates gk.

Lemma 7 The necessary condition for a minimum of Js
α,q(g, a) is given by

0 ∈ −T ′(g)∗(yδ − T (a)) + Cg − Ca + α∂Ψ(g). (3.4)
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The latter condition is written in the notion of subgradients. The structure of ∂Ψ(g)
depends now on the explicit choice of p. For p = 1, the functional Ψ is one-homogeneous.
Therefore, by duality arguments, Ψ can be associated with a closed convex set C, which
goes as follows: Let Ψ∗ denote the Fenchel transform (or so–called dual functional) of Ψ.
Then there is an associated convex set C such that Ψ∗ = χC, and, moreover, Ψ = (χC)

∗.
Hence, in the situation p = 1, we have the following characterization of the necessary
condition.

Lemma 8 Let p = 1, then the necessary condition (3.4) can be rewritten as

g =
α

C
(I − PC)

(
C

α
(T ′(g)∗(yδ − T (a))/C + a)

)
. (3.5)

where PC is the orthogonal projection onto a convex set C.

Since the techniques to show this statement are of importance when deriving the explicit
structure of the projection, we give the proof in full detail.

Proof. Let M(g, a) := T ′(g)∗(yδ − T (a))/C + a. Then we may rewrite (3.4)as follows,

M(g, a)− g
α
C

∈ ∂Ψ(g) ,

and thus, by means of the dual functional,

C

α
g ∈ C

α
∂Ψ∗

(
M(g, a)− g

α
C

)
.

The latter formula can then be expanded as follows,

M(g, a)
α
C

∈ M(g, a)− g
α
C

+
C

α
∂Ψ∗

(
M(g, a)− g

α
C

)
=

(
I +

C

α
∂Ψ∗

)(
M(g, a)− g

α
C

)
,

which yields (
I +

C

α
∂Ψ∗

)−1(
M(g, a)

α
C

)
=

M(g, a)− g
α
C

.

The operator
(
I + C

αj
∂Ψ∗

)−1

is nothing than the orthogonal projection on an associated

convex set C, and hence the assertion follows,

g =
α

C
(I − PC)

(
M(g, a)

α
C

)
.

�

Lemma 8 provides us with a fixed point problem for which the following result can be
easily deduced.
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Lemma 9 Let the fixed point map

Φ(g, a) =
α

C
(I − PC)

(
M(g, a)

α
C

)
be given. For some generic anchor a, the operator Φ(·, a) is a contraction as long as
L/C

√
Jα,q(a) < 1.

Proof. As it can be retrieved, e.g. from [7] or [14], the operator I − PC is non–expansive
as long as C is a closed and convex set. Then, with the help of the Lipschitz–continuity
of T ′, we have

‖Φ(g, a)− Φ(g̃, a)‖2
(`2)n =

α2

C2

∥∥∥∥(I − PC)

(
M(g, a)

α
C

)
− (I − PC)

(
M(g̃, a)

α
C

)∥∥∥∥2

(`2)n

≤ ‖M(g, a)−M(g̃, a)‖2
(`2)n

≤ 1

C2
‖T ′(g)− T ′(g̃)‖2‖yδ − T (a)‖2

Y

≤ Jα(a)L2

C2
‖g − g̃‖2

(`2)n

and the assertion follows. �

Setting now a = g0, it is clear that Φ(·, g0) is a contraction with
√

Jα(g0)L/C ≤ 1/2 < 1.
With the help of Corollary 6, i.e. since√

Jα(gk)L/C ≤
√

Jα(gk−1)L/C ≤ . . . ≤
√

Jα(g0)L/C ,

we deduce that for each gk the fixed point map Φ(·, gk) is a contraction.

Let us now explicitly evaluate the application of I − PC by incorporating the special
structure of Ψ for p = 1. To this end, we index the fixed point iterates with l. Note,
the meaning of the index l is different than k, the k indexing stands for iteration (2.8)
whereas the l indexing stands for the fixed point iteration which is used to derive the
iterates of (2.8),

gl+1 =
α

C
(I − PC)

(
M(gl, a)

α
C

)
. (3.6)

Proposition 10 Let p = 1 and 1 ≤ q ≤ ∞. The coefficients of the fixed point iterates in
(3.6) are given by

(gl+1)λ = ((g1
l+1)λ, . . . , (g

n
l+1)λ) = (I − PBq′ (C

−1αωλ))(Mλ(gl, a)) ,

where PBq′ (C
−1αωλ) denotes the orthogonal projection onto the ball

Bq′(C
−1αωλ) = {v ∈ Cn : ‖v‖q′ ≤ C−1αωλ}

with 1 = 1/q + 1/q′.
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Proof. Similar to the proof of Lemma 8, formula (3.6) can be equivalently cast as,

−M(gl, a) + gl+1 +
α

C
∂Ψ(gl+1) 3 0 .

which is the necessary condition for the functional

Ω(u) = ‖u− v‖2
(`2)n + 2γ

∑
λ∈Λ

ωλ‖uλ‖q , (3.7)

with the substitutes u = gl+1, v = M(gl, a) and γ = α/C. Taking into account the
vector valued structure of the problem, (3.7) reads as

Ω(u) =
n∑

i=1

∑
λ∈Λ

|(ui)λ − (vi)λ|2`2 + 2γ
∑
λ∈Λ

ωλ

(
n∑

i=1

|(ui)λ|q
)1/q

=
∑
λ∈Λ


n∑

i=1

|(ui)λ − (vi)λ|2`2 + 2γωλ

(
n∑

i=1

|(ui)λ|q
)1/q

 (3.8)

which can thus be minimized with respect to each individual component, i.e. for each λ
we have to minimize

‖uλ − vλ‖2 + 2γωλ‖uλ‖q.

By standard arguments, the minimizer is given by

(u∗)λ = γωλ(Id− PC)((γωλ)
−1vλ) ,

where the associated convex set C is given by the unit ball Bq′(1) in the dual norm of
‖ · ‖q and the proof is complete. �

In general, the evaluation of PBq′ (C
−1αωλ) is rather difficult and only for individual cases

explicitly given , e.g. q′ ∈ {1, 2,∞}, see Section 6. Let us now consider the case p = q
which can be directly evaluated without operating with duality arguments.

Lemma 11 Let p = q and Mλ(g, a) = (M1
λ(g, a), . . . ,Mn

λ (g, a))′ as before, then the
necessary condition (3.4) can be expressed componentwise,

gi
λ +

α

C
qωλsgn(gi

λ)|gi
λ|q−1 = M i

λ(g, a) . (3.9)

Proof. A direct computation of the derivative. �

In order to solve (3.9), we may write as before a fixed point iteration,

(gi
l+1)λ +

α

C
qωλsgn((gi

l+1)λ)|(gi
l+1)λ|q−1 = M i

λ(gl, a) .

As it can be retraced in [4], the map Fαωλ/C,q(x) = x + α
C
qωλsgn(x)|x|q−1 is for ωλ ≥ 0

and any q > 1 a one-to-one map from R to itself, we thus find that

(gi
l+1)λ = Sαωλ/C,q(M

i
λ(gl, a)) ,
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where Sαωλ/C,q is defined by Sαωλ/C,q = (Fαωλ/C,q)
−1 for q > 1. For q = 1, Sαωλ/C,1 is

nothing than the well-known soft-shrinkage operator with threshold αωλ/C. Introducing
the operator

Sαω/C,q(g) = {(Sαωλ/C,q(g
1
λ), . . . , Sαωλ/C,q(g

n
λ))}λ∈Λ

and taking into account that the operators Sαωλ/C,q are non-expansive (as it was shown
in [4]), Lemma 9 holds true also for p = q.

Lemma 12 For each k, the fixed point maps

Φ(g, gk) = Sαω/C,q (M(g, gk))

are contractions with damping factor L/C
√

Jα,q(gk) < 1.

Therefore, iteration (2.8) is derived for p = 1 and p = q in the same way. The only
difference is the evaluation of the inner fixed point iteration. We finally have:

Proposition 13 The necessary equation (3.5) for a minimum of the functional Js
α,q(g, gk)

has a unique fixed point, and the fixed point iteration converges towards the minimizer.

4 Norm Convergence of the Scheme

Within this section we show that the sequence of iterates {gk} converges strongly towards
a critical point of Jα. The first two steps can be retraced from [14]:

1. Since the iterates gk are uniformly bounded in the (`2)
n topology, one may extract

a weakly convergent subsequence gkl
with weak limit g?, see Lemma 13.

2. The weak limit g? satisfies the necessary condition for a minimizer of Jα, see Lemma
16.

It remains to show that gkl
converges in the (`2)

n norm and that the convergence carries
over to the whole sequence gk.

Theorem 14 Let {gkl
} ⊂ {gk} with gkl

w→ g?. Assume, moreover, that uniformly for all
gk,

Ψ(gk) =
∑

λ

ωλ‖(gk)λ‖p
q ≤ c̃ < ∞ (4.1)

with ωλ ≥ c > 0 for all λ ∈ Λ. Then, for 1 ≤ q ≤ 2, the subsequence {gkl
} converges in

the (`2)
n–norm.

The existence of some finite constant c̃ in (4.1) is due to Corollary 6 automatically satisfied.

Proof. For the case p = q we may proceed as in the proof of Theorem 18 in [14]. We
just have to replace | · |p with ‖ · ‖p

q and have to make the obvious modifications. The
strategy of this proof but with some technical changes applies to p = 1 in the following
way: Let gl be the shorthand notation for gkl

. Weak convergence for gl = (g1
l , . . . , g

n
l )′

means that each channel gi
l of the vector converges weakly. Therefore, for i = 1, . . . , n,

11



each component (gi
l)λ converges strongly towards (gi

?)λ and consequently, denoting with
(gl)λ the vector ((g1

l )λ, . . . , (g
n
l )λ)

′, it follows that

(gl)λ
‖·‖q−→ (g?)λ

as l →∞. The goal is now to show that

‖gl‖2
(`2)n −→ ‖g?‖2

(`2)n as l →∞.

To this end, consider the discrepancy

D :=

∣∣∣∣∣∑
λ

‖(gl)λ‖2
2 −

∑
λ

‖(g?)λ‖2
2

∣∣∣∣∣ .

Divide now the index set Λ into Λ̃ for which |Λ̃| = N holds and the complement Λ \ Λ̃.
Then, by the triangle inequality,

D ≤

∣∣∣∣∣∣
∑
λ∈Λ̃

(
‖(gl)λ‖2

2 − ‖(g?)λ‖2
2

)∣∣∣∣∣∣+
∑

λ∈Λ\Λ̃

‖(gl)λ‖2
2 +

∑
λ∈Λ\Λ̃

‖(g?
α)λ‖2

2 . (4.2)

Since 1 ≤ q ≤ 2, the (`2)
n–norm of gl satisfying Ψ(gl) < ∞ can be bounded by Hölder’s

inequality (with 1/q′ + 1/q = 1, implying q′ ≥ q),∑
λ

n∑
i=1

|(gl)
i
λ|2 ≤

∑
λ

ωλ‖(gl)λ‖q c−1‖(gl)λ‖q′ .

To find a uniform bound (with respect to l and λ) for the `p–norm (which exists because
of `q ⊆ `q′), consider

‖(gl)λ‖q′

q′ ≤ max
1≤i≤n

|(gi
l)λ|q

′−q‖(gl)λ‖q
q .

Since ωλ ≥ c > 0, it follows that∑
λ∈Λ

‖(gl)λ‖q ≤ c−1Ψ(gl) ≤ c−1c̃

and therefore ‖(gl)λ‖q
q ≤ (c−1c̃)q and maxi |(gi

l)λ|q
′−q ≤ (c−1c̃)q′−q, implying ‖(gl)λ‖q′ ≤

c−1c̃. Consequently, defining CΨ := c−2c̃, it holds ‖gl‖2
(`2)n ≤ CΨΨ(gl). For some fixed

ε > 0, choose now N such that ∑
λ∈Λ\Λ̃

ωλ‖(g?)λ‖q ≤
ε

5
C−1

Ψ . (4.3)

It follows immediately that∑
λ∈Λ\Λ̃

‖(g?)λ‖2
2 ≤ CΨ

∑
λ∈Λ\Λ̃

ωλ‖(g?)λ‖q ≤
ε

5
. (4.4)

Choosing now the iteration index l large enough such that∑
λ∈Λ

ωλ‖(gl)λ‖q =
∑
λ∈Λ

ωλ‖(g?)λ‖q + ε̃ (4.5)

12



and for λ ∈ Λ̃

ωλ‖(gl)λ‖q = ωλ‖(g?)λ‖q + ε̃/N , ‖(gl)λ‖2
2 = ‖(g?)λ‖2

2 + ˜̃ε/N , (4.6)

with |ε̃| ≤ C−1
Ψ ε/5 and |˜̃ε| ≤ ε/5. (4.5) is assured by Lemma 17, [14], and (4.6) can be

fulfilled as N is fixed and gl converges weakly to g?. It follows

∑
λ∈Λ\Λ̃

‖(gl)λ‖2
2 ≤ CΨ

∑
λ∈Λ\Λ̃

ωλ‖(gl)λ‖q = CΨ

∑
λ∈Λ

ωλ‖(gl)λ‖q −
∑
λ∈Λ̃

ωλ‖(gl)λ‖q


(4.5)(4.6)

≤ CΨ

∑
λ∈Λ

ωλ‖(g?)λ‖q + |ε̃| −
∑
λ∈Λ̃

ωλ‖(g?)λ‖q + N
|ε̃|
N


= CΨ

 ∑
λ∈Λ\Λ̃

ωλ‖(g?)λ‖q + 2|ε̃|

 (4.3)

≤ 3

5
ε . (4.7)

Moreover, by (4.6), ∣∣∣∣∣∣
∑
λ∈Λ̃

{
‖(gl)λ‖2

2 − ‖(g?)λ‖2
2

}∣∣∣∣∣∣ ≤
∑
λ∈Λ̃

|˜̃ε|/N ≤ ε

5
(4.8)

we obtain by combining estimates (4.4), (4.7) and (4.8) into (4.2), D ≤ ε and consequently,

lim
l→∞

‖gl‖(`2)n = ‖g?‖(`2)n .

�

The latter theorem ensures norm convergence for each weakly convergent subsequence.
However, the limits of different convergent subsequences {gkl

} ⊂ {gk} may differ. Chose
now some arbitrary norm convergent subsequence {gkl

} and denote with g′kl
the prede-

cessor of gkl
in {gk}. Then, Js

α,q(gkl
, g′kl

) → Jα,q(g?). Moreover, since Js
α,q(gk+1, gk) ≤

Js
α,q(gk, gk−1) for all k, it turns out that the value of the Tikhonov functional for every

limit g? of a convergent subsequence remains the same. In the next theorem we give a
simple criterion that ensures strong convergence of the whole sequence {gk} towards a
critical point of Jα,q.

Theorem 15 Assume that there exists at least one isolated limit g? of a subsequence
{gkl

} ⊂ {gk}. Then gk → g? as k →∞. The accumulation point g? fulfills the necessary
condition for a minimizer of Jα,q.

Proof. The first assertion can be directly taken from [13]. The second assertion is just
repeating Lemma 16, [14]. �

5 Regularization Result for A–Priori Parameter Rules

We achieve regularization results at two levels. At the first level, which holds true for
p = {1, q}, we verify that for some a–priori parameter choice rule for α the sequence of
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minimizers (for δ → 0) contains a weakly convergent subsequence for which the limit
is a solution for T (g) = y with minimal Ψ value. At the second level, we show norm
convergence. This result is so far restricted to p = q.

The first regularization result is very general and applies to Tikhonov functionals of
the form

Jα,q(x) = ‖yδ − T (x)‖2 + 2αΨ(x− x0) ,

with a–priori guess x0, a strongly continuous operator T between Banach spaces X and Y ,
and a penalty functional Ψ : X → R that is weakly lower semi-continuous with respect to
weak convergence in X. Moreover, we assume that every sequence xn ∈ X with bounded
value of Ψ(xn − x0) has a weakly convergent subsequence. This setting fits in particular
with the mentioned functional (2.6) for p = {1, q} and x0 = 0.

Theorem 16 Let yδ ∈ Y be given with ‖yδ − y‖ ≤ δk and δk → 0 for k → ∞. If the
regularization parameter is chosen such that αk → 0 and δ2

k/αk → 0 as k → ∞, then
every sequence of minimizers xδk

αk
has a weakly convergent subsequence in X. Every weak

limit is a solution of the equation T (x) = y with minimal distance to x0 with respect to
Ψ. If the solution of the equation is unique, then the whole sequence converges weakly.

Proof. This proof generalizes results given in [9]. Let xδk
αk

be a sequence of minimizers
according to the above given parameter rule, and x† a solution of T (x) = y with minimal
value of Ψ. The minimum property yields

‖yδk − T (xδk
αk

)‖2 ≤ ‖yδk − T (xδk
αk

)‖2 + αkΨ(xδk
αk
− x0) ≤ ‖yδk − T (x†)‖2 + αkΨ(x† − x0)

≤ δ2
k + αkΨ(x† − x0) ,

and thus,
lim
k→∞

T (xδk
αk

) = y . (5.1)

Moreover, we have

Ψ(xδk
αk
− x0) ≤

δ2
k

αk

+ Ψ(x† − x0) , (5.2)

which shows that Ψ(xδk
αk
−x0) is bounded. Therefore we have at least a weakly convergent

subsequence of xδk
αk

with weak limit x∗. For convenience, we will denote this subsequence
also by xδk

αk
. Strongly continuous operators transform weak convergent sequences into

strongly convergent ones, and thus it follows

y = lim
k→∞

T (xδk
αk

) = T (x∗) , (5.3)

and x∗ is also a solution. By the weakly lower semi-continuity of Ψ we conclude

Ψ(x∗ − x0) = lim inf Ψ(xδk
αk
− x0) ≤ lim sup Ψ(xδk

αk
− x0) (5.4)

(5.2)

≤ lim
k→∞

(
δ2
k

αk

+ Ψ(x† − x0)

)
= Ψ(x† − x0) , (5.5)

and x∗ is also a solution with minimal distance to x0 with respect to Ψ.
�
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Lemma 17 Let p = 1 in the penalty constraint of (2.6). Then the ‖gδk
αk
‖2

(`2,ω)n are uni-

formly bounded and thus there exists a subsequence of {gδk
αk
} that converges weakly with

respect to (`2,ω)n.

Proof. Inequality (5.2) reads as Ψ(gδk
αk

) ≤ ck := δ2
k/αk + Ψ(g†) < ∞. Similar as in

estimate (4.4), we have by Hölders inequality,

‖gδk
αk
‖2

(`2,ω)n =
n∑

i=1

∑
λ

ωλ|(gδk
αk

)i
λ|2 ≤

∑
λ

ωλ‖(gδk
αk

)λ‖q‖(gδk
αk

)λ‖q′ .

Since ωλ ≥ c > 0, it follows that∑
λ

‖(gδk
αk

)λ‖q ≤ c−1ck and thus, |(gδk
αk

)i
λ| ≤ c−1ck

and consequently, due to q′ ≥ q, it follows ‖(gδk
αk

)λ‖q′ ≤ c−1ck. And therefore, we obtain

lim sup
k→∞

‖gδk
αk
‖2

(`2,ω)n ≤ lim sup
k→∞

c−1c2
k = c−1Ψ2(g†) < ∞,

i.e. ‖gδk
αk
‖2

(`2,ω)n are uniformly bounded and therefore there exists a subsequence of {gδk
αk
}

that converges weakly with respect to (`2,ω)n. �

Lemma 18 Let p = q in the penalty constraint of (2.6). Then the ‖gδk
αk
‖2

(`2)n are uniformly

bounded and thus there exists a subsequence of {gδk
αk
} that converges weakly with respect

to (`2)
n.

Proof. As in the proof of Lemma 17, we may define the constant ck. Then, since now

|(gδk
αk

)i
λ| ≤ (c−1ck)

1/q ,

we have the following estimate,

‖gδk
αk
‖2

(`2)n ≤ c−1
∑

λ

ωλ

n∑
i=1

|(gδk
αk

)i
λ|2

≤ c−1
∑

λ

ωλ max
i
|(gδk

αk
)i
λ|2−q

n∑
i=1

|(gδk
αk

)i
λ|q ≤ c−1(c−1ck)

2−q
q ck = (c−1ck)

2/q .

Hence,
lim sup

k→∞
‖gδk

αk
‖2

(`2)n ≤ lim sup
k→∞

(c−1ck)
2/q = c−2/qΨ2/q(g†) < ∞,

and the proof is complete. �

It remains to show strong convergence of the weakly convergent subsequences. This result,
however, is so far limited to the case p = q.

Theorem 19 Let p = q and gδk
αk

be a weakly convergent sequence of minimizers of the
Tikhonov functional with weak limit g∗, obtained with the a-priori parameter rule as in
Theorem 16. Then the sequence converges also with respect to Ψ, i.e. also in (`2)

n.
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Proof. For ease of notation we will assume the a priori guess to be g0 = 0. Otherwise,
gδk

αk
and g∗ have to be replaced in the whole proof by gδk

αk
− g0 and g∗ − g0. In order to

estimate Ψ(gδk
αk
− g∗) we need to rewrite the absolute value of a real number. Defining

ϕ(x, h) =


−sgn(x) · h if 0 6= sgn(x) = sgn(h) and |x| > |h|
(sgn(x) · h− 2|x|) if 0 6= sgn(x) = sgn(h) and |x| ≤ |h|
|h| if 0 6= sgn(x) = −sgn(h)
|h| if x = 0 .

(5.6)

We obtain
|x− h| = |x|+ ϕ(x, h) . (5.7)

Clearly, we have |x| ≥ 0 and |x| + ϕ(x, h) ≥ 0. For a, a + b > 0 and 1 ≤ q ≤ 2 holds
(a + b)q ≤ κq(a

q + sgn(b)|b|q) (see e.g. Lemma 2 in [12]) and thus we get

(|x|+ ϕ(x, h))q ≤ κq (|x|q + sgn(ϕ)|ϕ(x, h)|q) . (5.8)

Setting x = (gδk
αk

)l
λ, h = (g∗)

l
λ yields

Ψ(gδk
αk
− (g∗)) =

∑
λ∈Λ

ωλ

n∑
i=1

|(gδk
αk

)i
λ − (g∗)

i
λ|q

(5.7)
=

∑
λ∈Λ

ωλ

n∑
i=1

(
|(gδk

αk
)i
λ|+ ϕ((gδk

αk
)i
λ, (g∗)

i
λ)
)q

(5.8)

≤ κq

(∑
λ∈Λ

ωλ

n∑
i=1

|(gδk
αk

)i
λ|q +

∑
λ∈Λ

ωλ

n∑
i=1

sgn(ϕ)|ϕ((gδk
αk

)i
λ, (g∗)

i
λ)|q
)

= κq

(
Ψ(gδk

αk
) +

∑
λ∈Λ

ωλ

n∑
i=1

sgn(ϕ)|ϕ((gδk
αk

)i
λ, (g∗)

i
λ)|q
)

≤ κq

(
Ψ(g∗) +

∑
λ∈Λ

ωλ

n∑
i=1

sgn(ϕ)|ϕ((gδk
αk

)i
λ, (g∗)

i
λ)|q
)

.

By the definition of ϕ(x, h) in (5.6) it follows,

|ϕ(x, h)| =


| − sgn(x) · h| ≤ |h| if 0 6= sgn(x) = sgn(h) and |x| > |h|
|sgn(x) · h− 2|x|| ≤ 3|h| if 0 6= sgn(x) = sgn(h) and |x| ≤ |h|
|h| if 0 6= sgn(x) = −sgn(h)
|h| if x = 0 .

(5.9)

i.e.
|ϕ((gδk

αk
)i
λ, (g∗)

i
λ, )|q ≤ 3q|(g∗)i

λ|q

and thus ∑
λ∈Λ

ωλ

n∑
i=1

|ϕ((gδk
αk

)i
λ, (g∗)

i
λ)| ≤ 3q

∑
λ∈Λ

ωλ

n∑
i=1

|(g∗)i
λ|q = 3qΨ(g∗) ,
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i.e. 3q
∑

λ∈Λ ωλ

∑n
i=1 |(g∗)i

λ|q dominates
∑

λ∈Λ ωλ

∑n
i=1 |ϕ((gδk

αk
)i
λ, (g∗)

i
λ)|q, and we can in-

terchange limit and sum,

lim
k→∞

∑
λ∈Λ

ωλ

n∑
i=1

sgn(ϕ)|ϕ((gδk
αk

)i
λ, (g∗)

i
λ)|q =

∑
λ∈Λ

ωλ

n∑
i=1

lim
k→∞

sgn(ϕ)|ϕ((gδk
αk

)i
λ, (g∗)

i
λ)|q .

(5.10)

As (gδk
αk

)i w−`2−→ (g∗)
i, we have in particular, (gδk

αk
)i
λ → (g∗)

i
λ for k → ∞. Now assume

(g∗)
i
λ 6= 0, then there exists k0 s.t. (gδk

αk
)i
λ 6= 0 and sgn((gδk

αk
)i
λ) = sgn((g∗)

i
λ) for all

k ≥ k0. According to the definition (5.6) of ϕ, we have for k ≥ k0

ϕ((gδk
αk

)i
λ, (g∗)

i
λ) =


−sgn((gδk

αk
)i
λ) · (g∗)i

λ = −|(g∗)i
λ|

sgn((gδk
αk

)i
λ) · (g∗)i

λ − 2|(gδk
αk

)i
λ| = |(g∗)i

λ| − 2|(gδk
αk

)i
λ|

,

which gives
lim
k→∞

ϕ((gδk
αk

)i
λ, (g∗)

i
λ) = −|(g∗)i

λ| ,

and
lim
k→∞

sgn(ϕ)|ϕ((gδk
αk

)i
λ, (g∗)

i
λ)|q = −|(g∗)i

λ|q .

Note that we do not have to consider the case (g∗)
i
λ = 0, as ϕ((gδk

αk
)i
λ, (g∗)

i
λ) = 0 holds

then anyway. Consequently,

0 ≤ lim
k→∞

Ψ(gδk
αk
− g∗) ≤ κq

(
Ψ(g∗) + lim

k→∞

∑
λ∈Λ

ωλ

n∑
i=1

sgn(ϕ)|ϕ((gδk
αk

)i
λ, (g∗)

i
λ)|q
)

= κq

(
Ψ(g∗) +

∑
λ∈Λ

ωλ

n∑
i=1

lim
k→∞

sgn(ϕ)|ϕ((gδk
αk

)i
λ, (g∗)

i
λ)|q
)

= κq

(
Ψ(g∗)−

∑
λ∈Λ

ωλ

M∑
i=1

|(g∗)i
λ|q
)

= 0 ,

which proves gδk
αk
→ (g∗) with respect to Ψ and since

‖g‖q
(`2)n ≤ c−1Ψ(g)

also with respect to (`2)
n. �

6 Application to Color Image Inpainting

In this section, we apply the algorithm developed in this paper to the restoration of
color images from limited color information and gray levels where the colors are missing,
see Figure 1. The reconstruction capabilities of the model are shown for piecewise and
randomly given color data, i.e. the restoration is obtained from few sparse complete
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Figure 1: Top: original color image (left); gray value image v̄ on the whole domain Ω
(middle); color fragment image x̄ on D ⊂ Ω (right); bottom: original color image (left);
gray value image v̄ on the whole domain Ω (middle); randomly sampled points of the
color image x̄ on D ⊂ Ω (right)

samples of the function and from significant incomplete information. The latter is assumed
as the result of a nonlinear distortion and with values in a lower dimensional manifold.

In what follows, we describe how this image restoration problem fits into our setting
and how the resulting algorithm performs the color reconstruction. The goal is to recon-
struct a vector valued function x that belongs to (L2(Ω))3, i.e. x : Ω ⊂ R2 → R3, on the
basis of an observed couple of functions (x̄, v̄). The observed function x̄ is assumed to
represent the correct information on D ⊂ Ω, and v̄ is the result of a nonlinear distortion
T̃ : R3 → R on Ω. Given now a frame {φλ}λ∈Λ for L2(Ω) (which is in this particular case a
Daubechies-3 wavelet frame), we associate to x = (x1, x2, x3), corresponding to the three
color channels (red, green, blue), a triple of vectors of frame coefficients, g = (g1, g2, g3),
such that

x = F ∗g = (F ∗g1, F ∗g2, F ∗g3).

Introducing T (g) := T̃ (F ∗g), a suitable cost functional for the color inpainting problem
can be cast as follows

Jα,q(g) = ‖(T (g)− v̄)‖2
Y + µ‖(F ∗g − x̄)χD‖2

(L2(Ω))3 + 2α
∑
λ∈Λ

ωλ‖gλ‖p
q , (6.1)

which is quite close to a cost functional suggested in [10]. The first data misfit term
penalizes the distance to the gray value information on Ω. The middle term forces the
solution to match the given color information on D ⊂ Ω. The last penalty is a joint
sparsity measure. The choice of this regularization measure is encouraged by the fact
that most of currently inpainting approaches deal with BV-like penalties. Since in 2
dimensions, `1 sparse wavelet expansions are known to give ‘near’ BV solutions, see, e.g.,
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[3, 6], this kind of sparsity constraint seems to be well suited for our purpose. Forcing,
moreover, for common sparsity pattern (e.g. edges in color images), a coupling of the
different color channels is advantageous and can be achieved when setting p = 1. Up
to the middle term, which is a simple quadratic misfit term, problem (6.1) fits with
(2.6). Therefore, we hope that the proposed iterative approach (2.8) yields a reasonable
approximation for a minimizer of (6.1).

In order elaborate the iterative algorithm (2.8) that reconstructs the color image on
the basis of (x̄, v̄), we have to characterize T in full detail and to derive the necessary
condition of (2.7). The nonlinear distortion operator T can be described as follows:

T (g) = T (F ∗g) = f(η1F
∗g1 + η2F

∗g2 + η3F
∗g3) = f(η · F ∗g) ,

where all ηi > 0 and
∑

i ηi = 1, and f : R → R is a non-negative function which is
assumed smooth, nonlinear, and normally non-convex and non-concave. Typically, f and
the vector η are unknown and have therefore to be estimated in advance by fitting a
distribution of data from real color fragments. In this case, there is an area D ⊂ Ω of
the domain Ω where some fragments with colors are placed and complete information
is available, and the full domain (including the inpainting region) where the gray value
information is known, modeled as the image of T . In our example, we assume that f and
η are given (in order to provide the gray value image). In particular, we set

f(t) = (1− cos(πt))/2 .

To derive the necessary condition of (2.7), we set X1 = X2 = X3 = L2(Ω) (see Section
2.2), and assume F to be the frame map such that F ∗gi ∈ L2(Ω). For the distortion map
and its Frèchet derivative at g it holds

T : (`2)
3 → L2(Ω) ,

and
T ′(g) = T̃ ′(F ∗g)F ∗ = f ′(η · F ∗g)η · F ∗ : (`2)

3 → L2(Ω) .

Therefore,
T ′(g)∗ = ηF (f ′(η · F ∗g)(·)) : L2(Ω) → (`2)

3 ,

and hence, the λ-componentwise necessary condition for a minimizer of the surrogate
functional (2.7) reads with gλ = ((g1)λ, (g

2)λ, (g
3)λ) and anchor a,

gλ = (I − PBq′ (C
−1αω)) ([(T ′(g)∗(v̄ − T (a))− µF (F ∗g − x̄)χD)/C + a]λ) , (6.2)

where the projection PBq′ (C
−1αω) (acting on the 3 channels) on the dual of the `q-ball is

for q = 2 explicitly given by

PB2(C−1αω)(gλ) =

 gλ if ‖gλ‖2 =
√∑2

i=1 |(gi)λ|2 ≤ C−1αωλ

C−1αωλ

‖gλ‖2
gλ otherwise

.

Denoting with S2
C−1αω the λ-componentwise projection I − PB2(C−1αω), we may define for

facility of inspection the shorthand notation S2
C−1αω by

S2
C−1αω(g) = {S2

C−1αω(gλ)}λ∈Λ .
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Figure 2: Image inpainting restorations F ∗gk = (F ∗g1
k, F

∗g2
k, F

∗g3
k) for iteration indices

k = 1, 10, 30, 70, 120, 200 (from top left to bottom right).

Then, we may write instead of (6.2) shortly

g = S2
C−1αω ((T ′(g)∗(v̄ − T (a))− µF (F ∗g − x̄)χD)/C + a) .

As S2
C−1αω is non-expansive, it can be easily deduced with the help of Lemma 9 that the

associated fixed point map,

Φ(g, a) = S2
C−1αω ((T ′(g)∗(v̄ − T (a))− µF (F ∗g − x̄)χD)/C + a) ,

is contractive as long as
L
√

Jα(g0) + µB

C
< 1 ,

where L is the Lipschitz constant of T ′ and B is the upper frame bound, see (2.1). Since
L
√

Jα(g0)/C ≤ 1/2 it follows that the choice of µ is restricted to µB/C < 1/2; which
can be easily achieved by choosing µ > 0 adequately.

We summarize now our findings and fix the iterative algorithm (2.8) for the purpose
of color image inpainting:

1. Pick g0 ∈ (`2)
3 and some proper constants C > 0 and µ > 0

2. Derive a sequence {gk}k=0,1,... by the iteration:

gk+1 = S2
C−1αω

(
(T ′(gk+1)

∗(v̄ − T (gk))− µF (F ∗gk+1 − x̄)χD)/C + gk

)
(6.3)

where each iterate can be evaluated via a simple fixed point iteration.

The color restoration/inpainting results that are obtained with the proposed algorithm
(6.3) are visualized in Figures 2 and 3.
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Figure 3: Image inpainting restorations F ∗gk = (F ∗g1
k, F

∗g2
k, F

∗g3
k) for iteration indices

k = 1, 11, 31, 61, 101, 161 (from top left to bottom right).
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