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1 Introduction

During the last two decades wavelet methods have developed into power-
ful tools for a wide range of applications in signal and image processing.
The success of wavelet methods is based on their potential for resolving lo-
cal properties and to analyze non-stationary structures. This is achieved by
multi-scale decompositions, e.g., a signal or image is mapped to a phase space
parametrized by a time/space- and a scale/size/resolution parameter. In this
respect, wavelet methods offer an alternative to classical Fourier- or Gabor-
transforms which create a phase space consisting of a time/space- frequency
parametrization. Hence, wavelet methods are advantageous whenever local,
non-stationary structures on different scales have to be analyzed.

The diversity of wavelet methods, however, requires a detailed mathemat-
ical analysis of the underlying physical or technical problem in order to take
full advantage of wavelet methods. This first of all requires to choose an appro-
priate wavelet. The construction of wavelets with special properties is still a
central problem in the field of wavelet and multi-scale analysis. We will review
a recently developed construction principle for multi-variate multi-wavelets in
the next section. As a second step one needs to develop tools for analyzing
the result of the wavelet decomposition. Recently, non-linear wavelet meth-
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ods (shrinkage techniques) have been developed for solving ill-posed operator
equations and inverse problems in imaging. The success of wavelet methods
in this field is a consequence of the following facts:

• Weighted sequence norms of wavelet expansion coefficients are equivalent
in a certain range (depending on the regularity of the wavelets) to Sobolev
and Besov norms.

• For a wide class of operators their representation in the wavelet basis is
nearly diagonal.

• The vanishing moments of wavelets remove smooth parts of a function and
give rise to very efficient compression strategies.

This will be demonstrated in a section on applications in signal and image
processing, where we highlight the potential of wavelet methods for non-linear
image decomposition and deconvolution tasks. The numerical results include
evaluations of real life data from MALDI/TOF mass spectroscopy from Bruker
Daltonics GmbH, Bremen, and HofmannLaRoche AG, Basel.

2 Multiwavelets

In this section we present a construction principle for multivariate multi-
wavelets, which remedies some fundamental drawbacks of classical wavelet
constructions.

The general setting can be described as follows. Let M be an integer d×d
scaling matrix which is expanding, i.e., all its eigenvalues have modulus larger
than one. If for a finite set I the system

ψi,j,β(x) := mj/2ψi(M jx− β), i ∈ I, j ∈ Z, β ∈ Zd, (1)

where m = |detM |, is a basis of L2(Rd), then {ψi,j,β}i∈I,j∈Z,β∈Zd is called a
wavelet basis. Within this classical setting there are still some serious bottle-
necks. It has turned out that some desirable properties cannot be achieved at
the same time. For instance, it would be optimal to construct an orthonormal
basis that is also interpolating, since orthonormality gives rise to very efficient
decomposition and reconstruction algorithms, and the interpolation property
yields a Shannon-like sampling theorem. However, it can be checked that for
sufficiently smooth wavelets such a construction is impossible [41].

To overcome this problem, a more general approach that provides more
flexibility is needed. One way is to consider multiwavelets, i.e., a collection of

function vectors Ψ (n) :=
(
ψ

(n)
0 , . . . , ψ

(n)
r−1

)>
∈ L2(Rd)r, 0 < n < m, for which{

ψ
(n)
0

(
M j · −β

)
, . . . , ψ

(n)
r−1

(
M j · −β

) ∣∣∣∣ j ∈ Z, β ∈ Zd, 0 < n < m

}
forms a (Riesz) basis of L2(Rd). Compared to the classical scalar setting, this
notion of wavelets is much more general.
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This section is organized as follows. In Subsection 2.1, we briefly recall the
basic properties of scaling functions and wavelets as far as they are needed for
our purposes. Then, in Subsection 2.2, we describe a new construction method
that enables us to construct orthogonal families of multiwavelets with suffi-
ciently high smoothness which are in addition also interpolating. This is a
very surprising result which clearly demonstrates the usefulness of the multi-
wavelet approach, since nothing similar can be done in the classical wavelet
setting. Finally, in Subsection 2.3, our approach is further extended by pre-
senting construction principles for biorthogonal pairs of symmetric compactly
supported interpolating scaling vectors with nice approximation and smooth-
ness properties. The results in this subsection have been published in a series
of papers [27, 28, 29, 30], we refer to these papers for further details.

2.1 General Setting

Refinable Function Vectors

Let Φ := (φ0, . . . , φr−1)>, r > 0, be a vector of L2(Rd)–functions which
satisfies a matrix refinement equation

Φ(x) =
∑
β∈Zd

AβΦ(Mx− β), Aβ ∈ Rr×r, (2)

with the mask A := (Aβ)β∈Zd , then Φ is called (A,M)–refinable. We shall
always assume that the mask has only a finite number of non-vanishing entries,
A ∈ `0(Zd)r×r, and these entries are denoted by

Aβ =


a
(0,0)
β · · · a

(0,r−1)
β

...
. . .

...
a
(r−1,0)
β · · · a(r−1,r−1)

β

 . (3)

Applying the Fourier transform component-wise to (2) yields

Φ̂(ω) =
1
m

A(e−iM
−>ω)Φ̂(M−>ω), ω ∈ Rd, (4)

where e−iω is a shorthand notation for (e−iω1 , . . . , e−iωd)>. The symbol A(z)
is the matrix valued Laurent series with entries

ai,j(z) :=
∑
β∈Zd

a
(i,j)
β zβ , z ∈ Td,

and Td :=
{
z ∈ Cd : |zi| = 1, i = 1, . . . , d

}
denotes the d–dimensional torus.

All elements ofTd have the form z = e−iω, ω ∈ Rd, thus we have zβ = e−i〈ω,β〉,
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and for ξ ∈ Rd we use the notation zξ := e−i(ω+2πξ). In addition, we define
zM := e−iM

>ω such that (zM )β = zMβ and zMξ := e−iM
>(ω+2πξ).

One central aim is the construction of families of interpolating m–scaling
vectors Φ with compact support, i.e., all components of Φ are at least contin-
uous and satisfy

φn
(
M−1β

)
= δρn,β for all β ∈ Zd, 0 ≤ n < m, (5)

where R := {ρ0, . . . , ρm−1} denotes a complete set of representatives of
Zd/MZd. Note that the interpolation condition (and the length of the scal-
ing vector) is determined by the determinant of the scaling matrix. One ad-
vantage of interpolating scaling vectors is that they give rise to a Shannon–
like sampling theorem as follows. For a compactly supported function vector
Φ ∈ L2(Rd)m, let us define the shift-invariant space

S(Φ) :=
{ ∑
β∈Zd

uβΦ(· − β)
∣∣u ∈ `(Zd)1×m}

.

A direct computation shows that, if Φ is a compactly supported interpo-
lating m–scaling vector, then for all f ∈ S(Φ) the representation

f(x) =
∑
β∈Zd

m−1∑
i=0

f
(
β +M−1ρi

)
φi(x− β) (6)

holds. The interpolation requirement is quite strong and implies the following
necessary condition on the mask.

Lemma 2.1 Let ρk ∈ MZd, then the mask of an interpolating m–scaling
vector has to satisfy

a
(i,k)
Mα+ρj−M−1ρk

= δ0,αδi,j for all α ∈ Zd, 0 ≤ i, j < m.

For simplicity of notation, we shall assume ρ0 = 0 ∈ Zd without loss of
generality. Then the above lemma implies that the symbol of an interpolating
m–scaling vector has to have the form

A(z) =

 zρ0 a(0,1)(z) · · · a(0,m−1)(z)
...

...
. . .

...
zρm−1 a(m−1,1)(z) · · · a(m−1,m−1)(z)

 . (7)

For the case m = 2 we can choose R = {0, ρ} and obtain

A(z) =
(

1 a(0)(z)
zρ a(1)(z)

)
. (8)
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Multiwavelets

Next we want to briefly explain how a multiwavelet basis can be constructed,
provided that a suitable (interpolating) refinable function vector is given. As
in the classical setting, a multiwavelet basis can be constructed by means of
a multiresolution analysis which is a sequence (Vj)j∈Z of closed subspaces of
L2(Rd) which satisfies:

(MRA1) Vj ⊂ Vj+1 for each j ∈ Z,
(MRA2) g(x) ∈ Vj if and only if g(Mx) ∈ Vj+1 for each j ∈ Z,
(MRA3)

⋂
j∈Z

Vj = {0},

(MRA4)
⋃
j∈Z

Vj is dense in L2(Rd), and

(MRA5) there exists a vector Φ ∈ L2(Rd)r, called the generator, such that

V0 = span{φi(x− β) |β ∈ Zd, 0 ≤ i < r}.
Let W0 denote an algebraic complement of V0 in V1 and define Wj :=

{g(M j ·) | g ∈ W0}. Then, one immediately obtains that Vj+1 = Vj ⊕Wj and
consequently, due to (MRA3) and (MRA4), L2(Rd) =

⊕
j∈Zd Wj . If one finds

function vectors Ψ (n) ∈ L2(Rd)r, 0 < n < m, such that the integer translates
of the components of all Ψ (n) are a basis of W0, then, by dilation, one obtains
a multiwavelet basis of L2(Rd). Since W0 ⊂ V1, each Ψ (n) can be represented
as

Ψ (n)(x) =
∑
β∈Zd

B
(n)
β Φ(Mx− β) (9)

for some B(n) ∈ `(Zd)r×r. By applying the Fourier transform component-wise
to (9) one obtains

Ψ̂ (n)(ω) =
1
m

B(n)(e−iM
−>ω)Φ̂(M−>ω), ω ∈ Rd,

with the symbol
B(n)(z) :=

∑
β∈Zd

B
(n)
β zβ , z ∈ Td.

Therefore, the task of finding a stable multiwavelet basis can be reduced to
constructing the symbols B(n)(z).

Consequently, to obtain some multiwavelets, we first have to find a way
to construct a suitable MRA. Under mild conditions, (MRA1) and (MRA2)
imply that the function vector Φ in (MRA5) satisfies a refinement equation of
the form (2). Therefore refinable function vectors are the natural candidates
for generators. Fortunately, it can be shown that any compactly supported
interpolating scaling vector indeed generates an MRA, therefore the whole
construction problem is reduced to finding suitable interpolating scaling vec-
tors. For further information, the reader is referred to [14, 32, 40].
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Approximation Order

In order to obtain efficient numerical algorithms, the power of the MRA to
approximate (sufficiently smooth) functions is essential. For a compactly sup-
ported function vector Φ ∈ L2(Rd)r and h > 0, let

Sh(Φ) :=
{
f

( ·
h

)
| f ∈ S(Φ) ∩ L2(Rd)

}
denote the space of all h–dilates of S(Φ) ∩ L2(Rd). Φ (or S(Φ)) is said to
provide approximation order k > 0 if the Jackson–type inequality

inf
g∈Sh(Φ)

‖f − g‖L2 = O(hk), as h→ 0,

holds for all f contained in the Sobolev space Hk(Rd). The approximation
properties of a scaling vector are closely related to its ability to reproduce
polynomials. A function vector Φ : Rd −→ Cr with compact support is said
to provide accuracy order k + 1, if πdk ⊂ S(Φ), where πdk denotes the space
of all polynomials of total degree less or equal than k in Rd. It was shown
by Jia, see [23], that if a compactly supported scaling vector Φ has linear
independent integer translates, then the order of accuracy is equivalent to the
approximation order provided by Φ.

A mask A ∈ `0(Zd)r×r of an r–scaling vector with respect to a scaling
matrixM satisfies the sum rules of order k, if there exists a set of vectors {yµ ∈
Rr |µ ∈ Zd+, |µ| < k} with y0 6= 0 such that for some uniquely determined
numbers w(µ, ν)

∑
0≤ν≤µ

(−1)|ν|

 ∑
β∈Zd

(
M−1ρ+ β

)ν
ν!

A>ρ+Mβ

 yµ−ν =
∑

|ν|=|µ|

w(µ, ν)yν (10)

holds for all µ ∈ Zd+ with |µ| < k and all ρ ∈ R. It was proven in [8, 24] that
if the mask of a compactly supported scaling vector Φ satisfies the sum rules
of order k, then Φ provides accuracy of order k.

2.2 Multivariate Orthonormal Interpolating Scaling Vectors

In this subsection, we want to derive a construction method to obtain a multi-
wavelet basis Ψ (n) which is orthogonal and interpolating. As already outlined
above, the whole construction can be reduced to the task of finding a suitable
refinable scaling vector. In particular, we will focus on scaling matrices with
|det(M)| = 2. Then, in the interpolating setting, we obtain r = m = 2, and
since the number of multiwavelets is determined by m, cf. Subsection 2.1, this
approach enables us to to construct a basis of L2(Rd) generated by one single
mother multiwavelet consisting of two functions only. Therefore the final goal
in this section is to construct a multiwavelet basis that satisfies



2 Multiwavelets 7

〈ψi,mj/2ψi′(M j · −β)〉 = cδi,i′δ0,jδ0,β , i, i′ = 0, 1, j ∈ Z, β ∈ Zd, (11)

with a constant c > 0, as well as Ψ
(
M−1β

)
=

(
δ0,β
δρ,β

)
for all β ∈ Zd, and R =

{0, ρ}.

Main Ingredients

As already explained, the starting point is an interpolating scaling vector
whose integer translates of all component functions are mutually orthogonal,
i.e.,

〈φi, φj(· − β)〉 = ĉδi,jδ0,β , i, j = 0, 1, β ∈ Zd, (12)
with a constant ĉ > 0. By using Fourier transform, it can be checked that the
symbol A(z) of an orthonormal scaling vector has to satisfy∑

ρ̃∈ eR
A

(
zM−>ρ̃

)
A

(
zM−>ρ̃

)>
= m2 Ir, (13)

where R̃ denotes a complete set of representatives of Zd/M>Zd. For the special
case of an interpolating 2–scaling vector with compact support we obtain the
following simplified conditions.

Theorem 2.2 Let A(z) be the symbol of an interpolating 2–scaling vector
with mask A ∈ `0(Zd)2×2. A(z) satisfies (13) if and only if the symbol entries
a(0)(z) and a(1)(z) in (8) satisfy∣∣∣a(0)(z)

∣∣∣2 +
∣∣∣a(0)

(
zM−>ρ̃

)∣∣∣2 = 2 (14)

and
a(1)(z) = ±zαa(0)(zM−>ρ̃) (15)

for some α ∈ [ρ], where [ρ] denotes the coset of ρ, and with R̃ = {0, ρ̃}.
So any construction of orthonormal and interpolating scaling functions has to
start with the necessary conditions stated in Theorem 2.2. In order to obtain a
useful result, also the approximation order, i.e., the sum rules have to be taken
into account. For an orthonormal interpolating scaling vector with m = 2 we
obtain the following simplification.

Theorem 2.3 If we choose a(1)(z) = zρ
∑
β∈Zd(−1)1[ρ](β)aβz

−β ,

a(0)(z) =
∑
β∈Zd aβz

β in (15), then for an orthonormal interpolating 2–scaling
vector the sum rules of order k are reduced to(

M−2ρ
)µ

=
∑
β∈Zd

aβ
(
−M−1β

)µ
,

(
M−2ρ

)µ
=

∑
β∈Zd

aβ
(
M−1β

)µ
(−1)1[ρ](β)

for all µ ∈ Zd+, |µ| < k, with R = {0, ρ}.
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Explicit Construction

Based on the results in the previous subsection, we suggest the following
construction principle:

1. Choose a scaling matrix M with |det (M)| = 2 and the nontrivial repre-
sentative ρ of Zd/MZd such that R = {0, ρ}.

2. Start with the first symbol entry a(0)(z) =
∑
β∈Λ aβz

β by choosing the
support Λ ⊂ Zd of (aβ)β∈Λ. Centering the coefficients around a0 provides
the best results, therefore we suggest the choice of Λ = [−n, n]d ∩ Zd.

3. According to Theorem 2.2 the second symbol entry a(1)(z) has to have the
form a(1)(z) = ±zαa(0)(zM−>ρ̃) with α ∈ [ρ]. Based on our observations
we suggest to choose α = ρ and a positive sign, since this seems to provide
the highest regularity and the smallest support.

4. Apply the orthogonality condition (14) to the coefficient sequence (aβ)β∈Λ.
This will consume about one half of the degrees of freedom.

5. Finally, apply the sum rules of Theorem 2.3 up to the highest possible
order to the coefficient sequence (aβ)β∈Λ.

Starting with an index set Λ = {−n, . . . , n}2 we obtain a sequence of scaling
vectors denoted by Φn with increasing accuracy order and regularity. For the
special case of the quincunx matrix Mq defined by

Mq :=
(

1 −1
1 1

)
,

let us denote the resulting scaling vector by Φqn. In Table 1 the properties of
the constructed examples are shown. Note that for n ≥ 2 all our solutions have

n accuracy order s(Φq
n)

0 1 0.238
1 1 0.743
2 2 1.355
3 3 1.699
4 3 1.819
5 4 2.002

Table 1. Accuracy order and critical Sobolev exponent s of the Φq
n

critical Sobolev exponents strictly larger than one. Therefore, by the Sobolev
embedding theorem, see [1], all these scaling vectors are at least continuous.

For n = 5 we obtain an example that is continuously differentiable. The
corresponding functions are shown in Figure 1. The reader should note that
these scaling vectors are very well localized.
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φ1
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3

4

x

y

Fig. 1. Component functions of Φq
5

ψ0 ψ1

Fig. 2. Multiwavelets corresponding to Φq
5

Multiwavelets

Once a suitable scaling vector is found, the construction of an associated
multiwavelet basis is easy.

Theorem 2.4 Let A(z) be the symbol of a compactly supported orthonormal
interpolating 2–scaling vector Φ. Furthermore, let the function vector Ψ be
defined by (9), where B(z) is given by

B(z) =
(

1 −a(0)(z)
zρ −a(1)(z)

)
(16)
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with a(0)(z) and a(1)(z) as in (8). Then,
√

2Ψ gives rise to an orthonormal
multiwavelet basis, and Ψ is also interpolating.

One example of such an interpolating multiwavelet corresponding to our
scaling vector Φq5 is shown in Figure 2.

2.3 Multivariate Symmetric Interpolating Scaling Vectors

In this subsection, our aim is to extend the approach obtained in the pre-
vious subsection by incorporating an additional property, namely symme-
try. Since symmetry is hard to achieve in the orthonormal setting, we fo-
cus on the construction of a pair of biorthogonal scaling vectors (Φ, Φ̃), i.e.,〈
φi, φ̃j(· − β)

〉
= c ·δi,jδ0,β , 0 ≤ i, j < r, holds for all β ∈ Zd and a constant

c > 0, the interpolation property being solely satisfied by the primal scaling
vectors. A necessary condition for Φ and Φ̃ to be biorthogonal is that their
symbols A(z) and Ã(z) satisfy∑

ρ̃∈ eR
A(zM−>ρ̃)Ã(zM−>ρ̃)

>
= m2Im. (17)

The concept of biorthogonality provides more flexibility compared to or-
thonormality, and likely scaling vectors can be obtained providing reasonable
approximation power together with much smaller supports than for the case
of orthonormal vectors.

Main Ingredients

The following notion of symmetry was introduced in [20], see also [19].
A finite set G ⊂

{
U ∈ Zd×d

∣∣ |detU | = 1
}

is called a symmetry group with
respect to M if G forms a group under matrix multiplication and for all U ∈ G
we have MUM−1 ∈ G. Since G is finite, U ∈ G implies M−1UM ∈ G as well.
A scaling vector Φ is called G-symmetric, if for 0 ≤ i < m and ci = M−1ρi
holds

φi(U(x− ci) + ci) = φi(x).

Since all elements of G are integer matrices, the notion of symmetry can
be used for sequences as well. In particular it holds

Proposition 2.5 Let G be a symmetry group with respect to M and let Φ
be a G–symmetric interpolating m–scaling vector with mask A ∈ `0(Zd)r×r.
If U [ρ] = [ρ] holds for all ρ ∈ R and for all U ∈ G, then the mask entries
(a(i,j)
β )β∈Zd are G–symmetric with centers ρi−M−1ρj =: c(i, j), meaning that

a
(i,j)
β = a

(i,j)
U(β−c(i,j))+c(i,j),

for all β ∈ Zd and all U ∈ G, 0 ≤ i, j < m.
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Proposition 2.5 shows that a symmetric interpolating scaling vector is com-
pletely determined by a small part of its mask.

Furthermore, we are able to give the following decomposition of the sup-
ports of our masks.

Proposition 2.6 Let a(i,j) ∈ `0(Zd), 0 ≤ i, j < m, be G–symmetric with
centers c(i, j) := ρi −M−1ρj. Then there exist finite sets Ωj ⊂ Zd such that
Ωj + M−1ρj is G–symmetric (i.e., U(Ωj + M−1ρj) ⊂ Ωj + M−1ρj for all
U ∈ G), and supp(a(i,j)) ⊂ Ωj + ρi. Furthermore, there exist sets Λj ⊂ Ωj
such that we have the disjoint decomposition

Ωj + ρi =
⋃

β∈Λj+ρi

⋃
U∈Gβ−c(i,j)

{
U(β − c(i, j)) + c(i, j)

}
. (18)

Similar to Theorem 2.2, using that Φ is intended to be interpolating, the
biorthogonality condition can be considerably simplified.

Proposition 2.7 Let (Φ, Φ̃) be a pair of dual m–scaling vectors with masks
(Aβ), (Ãβ) ∈ `0(Zd)m×m. If Φ is interpolating, then the biorthogonality con-
dition (17) holds if and only if

ã
(j,0)
ρi−Mα +

m−1∑
n=1

∑
β∈Zd

a
(i,n)
β ã

(j,n)
β−Mα = m · δ0,αδi,j , 0 ≤ i, j < m, (19)

holds for all α ∈ Zd.

Thus, given the mask of a primal interpolating scaling vector, the biorthogo-
nality condition leads to simple linear conditions on the dual mask.

Similar to the orthonormal case, before we can incorporate the sum rules
(10) into our construction, the vectors yµ have to be determined, see [28] for
details on how this can be realized.

Explicit Construction

In this section, we give an explicit construction method for the masks of
symmetric interpolating scaling vectors on Rd with compact support, as well
as for the masks of the dual scaling vectors which are also symmetric and
compactly supported. We start with the primal side:

1. Choose the scaling matrix M and a complete set of representatives R =
{0, ρ1, . . . , ρm−1} of Zd/MZd. Choose an appropriate symmetry group G.

2. To determine the support of the mask A ∈ `0(Zd)m×m, choose the sets Ωj
in Proposition 2.6 for 1 ≤ j < m and compute some minimal generating
sets Λj ⊂ Ωj . Thus, we start with m ·

∑m−1
j=1 |Λj | degrees of freedom.

3. Apply a proper sum rule order k (i.e. as high as possible) taking into
account the symmetry conditions in Proposition 2.5.

4. Find the best solution.
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If the sets Λj are not too large, we have to deal with a moderate number of
linear equations only. Hence, the system in step 3 can be solved analytically.
In general, this system is underdetermined and thus, as step 4 of our scheme,
we can use these remaining degrees of freedom to maximize the regularity of
the corresponding scaling vector Φ.

Given the mask of a symmetric interpolating scaling vector, the mask of
a dual scaling vector can be obtained as follows:

1. For 0 ≤ i < m choose the symmetry center ci of φ̃i. Due to the biorthog-
onality of Φ and Φ̃, the choice ci = M−1ρi suggests itself.

2. Determine the support of Ã ∈ `0(Zd)m×m by choosing Ω̃j , 0 ≤ j < m,
and compute some minimal generating sets Λ̃j ⊂ Ω̃j corresponding to
Proposition 2.6. Thus, we have m ·

∑m−1
j=0 |Λ̃j | degrees of freedom.

3. Apply the biorthogonality condition (19) to the coefficient sequence
(Ãβ)β∈Zd with respect to the symmetry conditions on the dual mask.

4. Choose a proper sum rule order k̃ and compute the vectors ỹµ, |µ| < k̃.
5. Apply the sum rules of order k̃ to the coefficient sequence Ã with respect

to the symmetry conditions on the dual mask.
6. Proceed analogously to step 4 for the primal vectors.

In [28] it has been shown that for a pair of compactly supported biorthog-
onal r-scaling vectors biorthogonal multiwavelets Ψ (n) and Ψ̃ (n), 1 ≤ n < m,
can be obtained by solving appropriate matrix extension problems. For in-
stance, for the quincunx matrix Mq and the symmetry group

G :=
{
±I,±

(
0 −1
1 0

)
,±

(
1 0
0 −1

)}
,

we obtain the primal multiwavelets shown in Figure 3.

ψ0 ψ1

Fig. 3. Primal multiwavelets corresponding to Mq with six vanishing moments and
critical Sobolev index s = 3.664
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3 Multiscale Approximation in Image Processing

In this section, we discuss some aspects of multiscale approximation in the
context of signal and image processing. Essentially, we are focusing on prob-
lems where it is reasonable to assume that the solution has a sparse expansion
with respect to a wavelet basis. The starting point is always a wavelet-based
variational formulation of the underlying signal or image restoration problem,
which incorporates a Besov-penalty for ensuring a sparse approximation. The
main ingredient to solve the regularized variational problem is therefore the
norm equivalence between Besov norms and sequence norms for the orthonor-
mal wavelet decomposition:

‖f‖Hs(R) <∞⇔
∑
k

|〈f, ϕJ,k〉|2 +
∑
j≥J

∑
k

22js |〈f, ψj,k〉|2 <∞ (3.1)

‖f‖Bs
p(Lp(R)) <∞⇔ 2J(1/2−1/p)

∑
k

|〈f, ϕJ,k〉|p

+
∑
j≥J

∑
k

2pjs2j(
p
2−1) |〈f, ψjk〉|p <∞ (3.2)

see [9]. By using tensor products, an analogous result can also be derived
for the multivariate case, see the appendix in [13]. A first result of this type
was presented in [15], where the definition of an appropriate surrogate func-
tional led to an iterated soft shrinkage procedure. The shrinkage is due to the
`p-penalization term in the variational formulation and leads to sparse sig-
nal representation. The importance of sparse representations for various tasks
in image processing such as compression, denoising, deblurring and texture
analysis has been highlighted in various papers, which also led to substantial
generalizations for solving this type of variational problems in image pro-
cessing, [2, 3, 37]. In this section emphasis is placed on the special case of
simultaneously denoising, decomposing and deblurring as well as some partic-
ular deconvolution tasks for peak-like objects. We also discuss the potential
of these methods for analyzing real life data from 1D and 2D applications in
mass spectroscopy.

3.1 Simultaneous Decomposition, Deblurring and Denoising of
Images by Means of Wavelets

We follow approaches presented by Vese–Osher and Osher–Solé–Vese, see
[34, 35] and discuss a special class of variational functionals that induce a
decomposition of images into oscillating and cartoon components and possi-
bly an appropriate ‘noise’ component; the cartoon part is, ideally, piecewise
smooth with possibly abrupt edges and contours; the texture part on the other
hand ‘fills’ in the smooth regions in the cartoon with, typically, oscillating fea-
tures. Osher, Solé and Vese propose to model the cartoon component by the
space BV ; this induces a penalty term that allows edges and contours in the
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reconstructed cartoon images, leading however to a numerically intensive PDE
based scheme. Our hope is to provide a computationally thriftier algorithm by
using a wavelet–based scheme that solves not the same but a very similar vari-
ational problem, in which the BV –constraint is replaced by a B1

1(L1)–term.
This relies on the fact that elementary methods based on wavelet shrinkage
solve similar extremal problems where BV (Ω) is replaced by the Besov space
B1

1(L1(Ω)). Since BV (Ω) can not be simply described in terms of wavelet co-
efficients, it is not clear that BV (Ω) minimizers can be obtained in this way.
Yet, it is shown in [11], exploiting B1

1(L1(Ω)) ⊂ BV (Ω) ⊂ B1
1(L1(Ω))−weak,

that methods using Haar systems provide nearBV (Ω) minimizers. So far there
exists no similar result for general (in particular smoother) wavelet systems.
We shall nevertheless use wavelets that have more smoothness/vanishing mo-
ments than Haar wavelets, because we expect them to be better suited to the
modeling of the smooth parts in the cartoon image. Though we may not ob-
tain provable ‘near–best–BV –minimizers’, we hope to nevertheless be ‘not far
off’. This approach allows us, moreover, to incorporate bounded linear blur
operators into the problem so that the minimization leads to a simultaneous
decomposition, deblurring and denoising.

Wavelet-Based Variational Formulation and Iterative Strategy for
Image Decomposition

The basic idea of the variational formulation of the decomposition problem
goes back to the famous total variation framework of Rudin, Osher and Fatemi
[38] and was improved in a series of papers, see e.g. [33, 34, 35, 36], finally
amounting to the following minimization problem

inf
u,v

G2(u, v) , where (3.3)

G2(u, v) =
∫
Ω

|∇u|+ λ‖f − (u+ v)‖2L2(Ω) + µ‖v‖2H−1(Ω) ,

where u stands for the cartoon part and v for the oscillatory part of a given
image f . In general, one drawback is that the minimization of (3.3) leads to
numerically intensive schemes. Instead of solving problem (3.3) by means of
finite difference schemes, we propose a wavelet–based treatment by replacing
BV (Ω) by the Besov space B1

1(L1(Ω)). Incorporating, moreover, a bounded
linear operator K, we end up with the following variational problem:

inf
u,v
Ff (v, u) , where

Ff (v, u) = ‖f −K(u+ v)‖2L2(Ω) + γ‖v‖2H−1(Ω) + 2α|u|B1
1(L1(Ω)) . (3.4)

At first, we may observe the following

Lemma 3.1 If the null–space N (K) of the operator K is trivial, then the
variational problem (3.4) has a unique minimizer.
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In order to solve problem (3.4) by means of wavelets we have to switch to
the sequence space formulation. When K is the identity operator the problem
simplifies to

inf
u,v

{∑
λ∈J

(
|fλ − (uλ + vλ)|2 + γ2−2|λ||vλ|2 + 2α|uλ|

)}
, (3.5)

where J = {λ = (i, j, k) : k ∈ Jj , j ∈ Z, i = 1, 2, 3} is the index set used in
our separable setting. The minimization of (3.5) is straightforward, since it
decouples into easy one–dimensional minimizations. This results in an explicit
shrinkage scheme, presented also in [16, 17]:

Proposition 3.2 Let f be a given function. The functional (3.5) is minimized
by the parameterized class of functions ṽγ,α and ũγ,α given by the following
nonlinear filtering of the wavelet series of f :

ṽγ,α =
∑
λ∈Jj0

(1 + γ2−2|λ|)−1
[
fλ − Sα(22|λ|+γ)/γ(fλ)

]
ψλ

and
ũγ,α = f〈j0〉 +

∑
λ∈Jj0

Sα(22|λ|+γ)/γ(fλ)ψλ ,

where St denotes the soft-shrinkage operator, Jj0 all indices λ for scales larger
than j0 and f〈j0〉 is the approximation at the coarsest scale j0.

In the case where K is not the identity operator the minimization process
results in a coupled system of nonlinear equations for the wavelet coefficients
uλ and vλ, which is not as straightforward to solve. To overcome this problem
we proceed as follows. We first solve the quadratic problem for v, and then
construct an iteration scheme for u. To this end, we introduce the differential
operator T := (−∆)1/2. Setting v = Th, problem (3.4) reads as

inf
(u,h)

Ff (h, u) , with (3.6)

Ff (h, u) = ‖f −K(u+ Th)‖2L2(Ω) + γ‖h‖2L2(Ω) + 2α|u|B1
1(L1(Ω)) .

Minimizing (3.6) with respect to h results in

h̃γ(f, u) = (T ∗K∗KT + γ)−1T ∗K∗(f −Ku)

or equivalently

ṽγ(f, u) = T (T ∗K∗KT + γ)−1T ∗K∗(f −Ku) .

Inserting this explicit expression for h̃γ(f, u) in (3.6) and defining

fγ := Tγf, T 2
γ := I −KT (T ∗K∗KT + γ)−1T ∗K∗ , (3.7)
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we obtain

Ff (h̃γ(f, u), u) = ‖fγ − TγKu‖2L2(Ω) + 2α|u|B1
1(L1(Ω)) . (3.8)

Thus, the remaining task is to solve

inf
u
Ff (h̃γ(f, u), u) , where (3.9)

Ff (h̃γ(f, u), u) = ‖fγ − TγKu‖2L2(Ω) + 2α|u|B1
1(L1(Ω)) .

Proposition 3.3 Suppose that K is a linear bounded operator modeling the
blur, with K maps L2(Ω) to L2(Ω) and ‖K∗K‖ < 1. Moreover, assume Tγ is
defined as in (3.7) and the functional Fsurf (h̃, u; a) is defined by

Fsurf (h̃γ(f, u), u; a) = Ff (h̃γ(f, u), u) + ‖u− a‖2L2(Ω) − ‖TγK(u− a)‖2L2(Ω) .

Then, for arbitrarily chosen a ∈ L2(Ω), the functional Fsurf (h̃γ(f, u), u; a) has
a unique minimizer in L2(Ω). The minimizing element is given by

ũγ,α = Sα(a+K∗T 2
γ (f −Ka)) ,

where the operator Sα is defined component-wise by

Sα(x) =
∑
λ

Sα(xλ)ψλ .

The proof follows from [17]. One can now define an iterative algorithm by
repeated minimization of Fsurf :

u0 arbitrary ; un = arg min
u

(
Fsurf (h̃γ(f, u), u;un−1)

)
n = 1, 2, . . . (3.10)

The convergence results shown in [15, 16, 18] can be applied directly:

Theorem 3.4 Suppose that K is a linear bounded operator, with ‖K∗K‖ < 1,
and that Tγ is defined as in (3.7). Then the sequence of iterates

unγ,α = Sα(un−1
γ,α +K∗T 2

γ (f −Kun−1
γ,α )) , n = 1, 2, . . . ,

with arbitrarily chosen u0 ∈ L2(Ω), converges in norm to a minimizer ũγ,α
of the functional

Ff (h̃γ(f, u), u) = ‖Tγ(f −Ku)‖2L2(Ω) + 2α|u|B1
1(L1(Ω)) .

If N (TγK) = {0}, then the minimizer ũγ,α is unique, and every sequence of
iterates converges to ũγ,α in norm.

Combining the result of Theorem 3.4 and the representation for ṽ we sum-
marize how the image can finally be decomposed in cartoon and oscillating
components.
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Fig. 4. An initial geometric image f (left), and two versions of f (the middle
decomposed with the Haar wavelet basis and the right with the Db3 basis) where
the soft-shrinkage operator with shrinkage parameter α = 0.5 was applied.

Fig. 5. From left to right: initial geometric image f , ũ, ṽ+150, computed with Db3
in the translation invariant setting, α = 0.5, γ = 0.01.

Corollary 3.5 Assume that K is a linear bounded operator modeling the blur,
with ‖K∗K‖ < 1. Moreover, if Tγ is defined as in (3.7) and if ũγ,α is the
minimizing element of (3.9), obtained as a limit of unγ,α (see Theorem 3.4),
then the variational problem

inf
(u,h)

Ff (h, u), with Ff (h, u) = ‖f−K(u+Th)‖2L2(Ω)+γ‖h‖
2
L2(Ω)+2α|u|B1

1(L1(Ω))

is minimized by the class

(ũγ,α, (T ∗K∗KT + γ)−1T ∗K∗(f −Kũγ,α)) .

where ũγ,α is the unique limit of the sequence

unγ,α = Sα(un−1
γ,α +K∗T 2

γ (f −Kun−1
γ,α )) , n = 1, 2, . . . .

Numerical Experiments - Additional Redundancy and Adaptivity

The non-linear filtering rule of Proposition 3.2 gives explicit descriptions of
ṽ and ũ that are computed by fast discrete wavelet schemes. However, non-
redundant filtering very often creates artifacts in terms of undesirable oscilla-
tions, which manifest themselves as ringing and edge blurring, see Figure 4.
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Fig. 6. Left: noisy segment of a woman image, middle and right: first two scales of
S(f) inducing the weight function w.

Poor directional selectivity of traditional tensor product wavelet bases likewise
cause artifacts. Therefore we apply various refinements on the basic algorithm
that address this problem. In particular, we shall use redundant translation
invariant schemes, see [12], complex wavelets, see e.g. [25, 39], and additional
edge dependent penalty weights introduced in [17]. Here we limit ourselves to
presenting the numerical results for the particular problem of simultaneously
decomposing, deblurring and denoising a given image.

We start with the case where K is the identity operator. In order to show
how the nonlinear (redundant) wavelet scheme acts on piecewise constant
functions we decompose a geometric image (representing cartoon components
only) with sharp contours, see Figure 5. We observe that ũ represents the car-
toon part very well. The texture component ṽ (plus a constant for illustration
purposes) contains only some very weak contour structures.

Next, we demonstrate the performance of the Haar shrinkage algorithm
successively incorporating redundancy (by cycle spinning) and local penalty
weights. The local penalty weights are computed the following way: first, we
apply the shrinkage operator S to f with a level dependent threshold α′.
Second, for those λ according to the non–zero values of Sα′(fλ) we put an
extra weight wλ >> 1 in the H−1 penalty. The coefficients Sξ(fλ) for the first
two scales of a segment of the image ‘Barbara’ are visualized in Figure 6. In
Figure 7, we present our numerical results. The upper row shows the original
and the noisy image. The next row visualizes the results for non-redundant
Haar shrinkage (Method A). The third row shows the same but incorporating
cycle spinning (Method B), and the last row shows the incorporation of cycle
spinning and local penalty weights. Each extension of the shrinkage method
improves the results. This is also being confirmed by comparing the signal–to–
noise-ratios (which is here defined as follows: SNR(f, g) = 10 log10(‖f‖2/‖f−
g‖2)), see Table 2.

In order to compare the performance with the Vese–Osher TV model and
with the Vese–Solé–Osher H−1 model we apply our scheme to a woman im-
age (the same that was used in [34, 35]), see Figure 8. We obtain very similar
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Fig. 7. Top: initial and noisy image, 2nd row: non-redundant Haar shrinkage
(Method A), 3rd row: translation invariant Haar shrinkage (Method B), bottom:
translation invariant Haar shrinkage with edge enhancement (Method C); 2nd-4th
row from left to right: ũ, ṽ + 150 and ũ + ṽ, α = 0.5, γ = 0.0001, computed with
Haar wavelets and critical scale je = −3.

results as obtained with the TV model proposed in [35]. Compared with the
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Haar Shrinkage SNR(f , fε) SNR(f ,u+ v) SNR(f ,u)

Method A 20,7203 18,3319 16,0680
Method B 20,7203 21,6672 16,5886
Method C 20,7203 23,8334 17,5070

Table 2. Signal–to–noise ratios of the several decomposition methods (Haar shrink-
age, translation invariant Haar shrinkage, translation invariant Haar shrinkage with
edge enhancement).

Data basis ”Barbara” image (512x512 pixel)

Hardware Architecture PC
Operating System linux
OS Distribution redhat7.3
Model PC, AMD Athlon-XP
Memory Size (MB) 1024
Processor Speed (MHz) 1333
Number of CPUs 1

Computational cost (average over 10 runs)

PDE scheme in Fortran (compiler f77) 56,67 sec
wavelet shrinkage Method A (Matlab) 4,20 sec
wavelet shrinkage Method B (Matlab) 24,78 sec
wavelet shrinkage Method C (Matlab) 26,56 sec

Table 3. Comparison of computational cost of the PDE– and the wavelet–based
methods.

results obtained with the H−1 model proposed in [34] we observe that our
reconstruction of the texture component contains much less cartoon informa-
tion. In terms of computational cost we have observed that even in the case of
applying cycle spinning and edge enhancement our proposed wavelet shrink-
age scheme is less time consuming than the Vese–Solé–Osher H−1 restoration
scheme, see table 3, even when the wavelet method is implemented in Matlab,
which is slower than the compiled version for the Vese–Solé–Osher scheme.

We end this section with an experiment where K is not the identity oper-
ator. In our particular case K is a convolution operator with Gaussian kernel.
The implementation is simply done in Fourier space. The upper row in Figure
9 shows the original f and the blurred image Kf . The lower row visualizes
the results: the cartoon component ũ, the texture component ṽ, and the sum
of both ũ + ṽ. One may clearly see that the deblurred image ũ + ṽ contains
(after a small number of iterations) more small scale details than Kf . This
definitely shows the capabilities of the proposed iterative deblurring scheme
(3.10).
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Fig. 8. Top from left to right: initial woman image f , ũ and ṽ+150, computed with
Db10 (Method C), α = 0.5, γ = 0.002; bottom from left to right: u and v obtained
by the Vese–Osher TV model and the v component obtained by the Vese–Solé–Osher
H−1 model.

3.2 Deconvolution of δ-Sequences

This section was inspired by discussions with signal and imaging experts in
the field of preprocessing 1D and 2D mass spectroscopy data in proteomics.
Both applications are mathematically modeled by a convolution operator,
hence the data are some blurred and noisy signals or images. Accordingly, the
classical approach for solving this inverse ill-posed problem would consist of
a regularized deconvolution applied to the given data.

However, the sought-after signals or images are mathematically modeled
by finite sums of delta peaks, which are not captured by the classical theory.
Moreover, numerical experiments in both fields indicate, that a somewhat
‘practical approach’ yields better results. This ‘practical approach’ proceeds
by computing a wavelet-shrinkage on an appropriate wavelet decomposition
followed by simply plotting the positions and amplitudes of the remaining
coefficients. It has been shown, [26], that this approach is indeed equivalent
to a regularized deconvolution scheme in Besov scales. Besov scales are needed
in order to obtain an appropriate mathematical model for the reconstruction
of such sequences of delta peaks.

The aim of the present section is to summarize the mathematical justifi-
cation of this approach as given in [26] and to present reconstruction results
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Fig. 9. Top from left to right: initial image f , blurred image Kf ; middle from left
to right: deblurred ũ, deblurred ṽ + 150; bottom: deblurred ũ + ṽ, computed with
Db3 using the iterative approach, α = 0.2, γ = 0.001.

for deconvolving 1D MALDI/TOF-data (Bruker Daltonics GmbH) and 2D
LCMS spectra (HofmannLARoche AG).

This approach will require to measure the defect ‖Af − gδ‖Bs
p(Lp) in an

appropriate Besov space. Hence the resulting regularization method extends
the recently proposed sparsity schemes for solving inverse problems [3, 15, 37],
which treated L2 defects, i.e. ‖Af−gδ‖L2 , in combination with Besov sparsity
constraints.
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A Mathematical Formulation of the Practical Approach

As a first observation, let us note, that in both applications, the sought-after
function can be modeled by a finite set of delta peaks. Hence, the sought-after
function has a sparse structure and, in addition, the mass spectroscopy data
is equispaced by multiples of the unitary atomic mass.

Therefore, let us now state the mathematical formulation which is the
basis of the above mentioned practical approach:

We consider some noisy data gδ, a function with finite support. The ‘prac-
tical approach’ is a two-step procedure, which starts by a shrinkage operation
on an appropriate wavelet decomposition followed by plotting the amplitudes
and positions of the remaining coefficients.

Let us formalize this procedure. Applying a shrinkage operation Sλ to gδ

starts by computing a wavelet decomposition with a bi-orthogonal wavelet
basis ϕ,ψ, ϕ̃, ψ̃,

gδ =
∑
k∈Z

cJk 2J/2ϕ(2J · −k) +
∑

j≥J,k∈Z
djk 2j/2ψ(2j · −k)

where the coefficients are given by ck = 〈gδ, 2J/2ϕ̃(2J · −k)〉 and djk =
〈gδ, 2j/2ψ̃(2j · −k)〉, see, e. g., [32]. It follows a shrinkage of the coefficients,
i. e. deleting all coefficients |djk| ≤ λ. This yields a function Sλgδ which is the
finite sum of wavelet and scaling functions. We choose a ‘finest scale’ j0 > J
(for convenience of notation we set j0 = 0) and delete all coefficients on scales
finer than j0. This amounts to a projection of Sλgδ and hence,

P0Sλg
δ =

∑
k∈Z

cJk2J/2ϕ(2J · −k) +
∑

0≥j≥J,k∈Z
djk2

j/2ψ(2j · −k) =
∑
k∈Z

ckϕ(· − k)

can be represented as a finite sum of scaling functions on this scale. The recon-
struction by plotting the position of the coefficient sequence {ck} is equivalent
to a reconstruction

RαP0Sλg
δ =

∑
k∈Z

ck δ(· − k) ,

which is a deconvolution of P0Sλg
δ with the scaling function ϕ. This should

give good results, whenever ϕ is a good approximation to the kernel of the
true convolution operator.

This ‘practical approach’ also shares some ingredients with the compressive
sampling techniques, [6, 7], however, they proceed in a different direction by
analyzing achievable levels of resolution as well as deriving sampling theorems.

Finally we want to mention some of the prominent papers in the vast lit-
erature, which analyze specific properties of deconvolution problems. There
are at least two fairly recent papers, which start from a precise mathematical
model for specific applications. In [22] cumulative spectra in Hilbert scales are
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treated, and [21] analyzes a deconvolution problem in astronomy in combina-
tion with an efficient CG solver. Both papers use models in L2 spaces with
source conditions in Hilbert scales.

The publications [4, 5] give an overview on inverse problems in astronomy,
in particular they address the relevant convolution problems in this field. We
are well aware of the fact, that this is an incomplete list of even the most basic
results. However, to our best knowledge, deconvolution problems in Besov
spaces have not yet been addressed in the accessible literature.

Basic Ingredients

Despite the rather basic mathematical model (convolution operator) of the
underlying application a precise definition of all ingredients of the related
inverse problem (function spaces, convolution kernels, source conditions) re-
quires some care. The most frequently used models use L2-function spaces,
mainly for convenience and in order to apply standard regularization theory.
However, the nature of the specific convolution problems under consideration
is characterized by

• a sparse structure of the solution and
• a model which needs to capture spectral lines or point like objects, i. e. a

chain of delta peaks.

Neither of these two requirements is captured by the standard theory.
In this section we will first introduce the convolution operators under con-

sideration. They will be rather straightforward and classical. We then intro-
duce the appropriate function spaces, which leads to Besov spaces and sparsity
constraints.

The natural models for the applications described in the introduction is
given by an operator A : X → Y which is an integral transform with a
convolution kernel:

Af = ϕ ∗ f =
∫

ϕ(· − y)f(y) dy,

where ϕ approximates the point spread function of the measurement device.
We will first address the case of a 1D B-spline kernel ϕ , i.e.

ϕk(x) = ϕ ∗ ... ∗ ϕ︸ ︷︷ ︸
k times

(x), where ϕ(x) =
1
2r
χ[−r,r](x) (3.11)

These convolution kernels define standard operators Ak by

Akf = ϕk ∗ f . (3.12)

They are continuous smoothing operators of the same order in Sobolev as well
as in Besov scales
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Ak : Hs → Hs+k

Ak : Bsp(Lp) → Bs+kp (Lp) .

The extension to higher dimensions by tensor products is straightforward,
the case of general kernels k is addressed in Theorem 3.9.

The appropriate mathematical model is a sum of delta peaks

f(x) =
N∑
k=1

fkδ(x− k). (3.13)

Suitable model spaces for point-like objects are defined via Besov norms: delta
peaks in R are elements of any Besov space Bsp(Lp(Rd)) satisfying (s+1)p < 1.
The most important cases are p = 2, i.e. the classical Sobolev case of negative
order (s < −1/2), and p = 1 which requires s < 0:

δ ∈ B−ε
1 (L1(R)) or δ ∈ H−1/2−ε(R) for any ε > 0 .

Model Problems and Regularization Techniques

As we have described in the previous section, there are various meaningful
choices for different model spaces as well as for defining convolution oper-
ators. Discussing the most general choice would involve a jungle of indices,
which would obscure the main objective of the present section: to show the
importance of Besov regularization schemes for solving inverse convolution
problems.

We will therefore concentrate in the following on analyzing one model
problem in detail and address the general cases in some remarks.

Following the discussion on the different modeling alternatives in the pre-
vious section we will now select some illustrative choices for the convolution
kernel, the model space for source conditions, the noise model and a partic-
ular solution f+. We will focus on the one-dimensional case (d = 1) in the
following.

As convolution kernel we always choose a B-spline of order two in this
section, the general case of an approximate kernel is discussed below.

The corresponding convolution operator A2, defined by (3.12) is smoothing
of order two in Sobolev- as well as in Besov scales:

A2 : Hs(R) → Hs+2(R) or A2 : Bs1(L1(R)) → Bs+2
1 (L1(R)) .

As usual, the unavoidable data error will require to choose some weaker norms
in the image space.

Problem 1 This model is the appropriate physical model for the above men-
tioned real life deconvolution problems in mass spectroscopy as well as in as-
tronomy. It has no direct analogon in the classical regularization theory.
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The problem of reconstructing sequences of Dirac peaks f+ =
∑
fkδ(·−k)

requires a model space X = B−ε
1 (L1(R)) with an arbitrary small but fixed ε.

We use a white noise model, hence gδ = g+ + δdW .
We exploit the smoothing properties of A2, i.e. Af+ ∈ B2−ε

1 (L1(R)). No
additional source condition on the smoothness of f+ is required.

In all cases, A2 is smoothing images about two orders, i. e. f ∈ Hs(R)
implies A2f ∈ H2+s(R) .

Convergence Analysis

Our primary objective concerns a mathematical analysis of the ‘practical ap-
proach’ as explained in the introduction. To this end we will first analyze
Problem 1 and compare the convergence results with other settings.

The approximation properties of wavelet shrinkage operators are well stud-
ied by now. We will use the results of [10, Theorem 4], which state the follow-
ing.

Theorem 3.6 Let s, σ, p, q, α denote real numbers s.t. f ∈ Bsq(Lq), 0 < α ≤
1, q = (1 − α)p, s = σp/q + (p/q − 1)/2, σ − 1/p > −α/2. Let further
fδ = f + δdW and denote with Sλ the hard shrinkage operator. Define the
threshold λ and the cut-off scale J via

λ '
√

2| log δ|δ, 2J = − 1
2δ2 log δ

(3.14)

and the projection PJ via

PJf =
∑

j≤J,k∈Z
〈f, ψ̃j,k〉ψj,k. (3.15)

Then the estimator

fδλ = PJSλf
δ =

∑
j≤J,k∈Z,|〈fδ,ψ̃j,k〉|>λ

〈fδ, ψ̃j,k〉ψj,k (3.16)

fulfills
E(‖fδλ − f‖pBσ

p (Lp)) . (
√
| log δ|δ)αp. (3.17)

Here and in the following ‘a ' b’ means that both quantities can be uniformly
bounded by constant multiples of each other. Likewise, ‘.’ indicates inequal-
ities up to constant factors. We will need this result only for measuring the
approximation error on the scale Bs1(L1) of Besov spaces.

Analysis of the Model Problem

This is the basic deconvolution problem for sparse, peak-like structures, e.g.
mass spectroscopy data or certain astrophysical images.
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The convolution operator A2 maps a delta sequence f+ =
∑
fkδ(· − k) to

a sum of hat functions g+ = A2f
+ =

∑
fkϕ2(·−k) with ϕ2 defined by (3.11).

For the rest of this section we denote ϕ = ϕ2. Hence, the exact inverse de-
convolution operator is well defined on such finite sums g =

∑
ckϕ(· − k) and

yields a sequence of delta peaks: A−1
2 g =

∑
ckδ(· − k).

We now exploit the denoising properties of wavelet shrinkage methods on
the data side for given noisy data gδ = g+ + δ dW . The general result for the
present situation is given by the following Corollary, see [26].

Corollary 3.7 Let g+ =
∑
k∈Z

fkϕ(· − k) denote a finite sum of second order

B-splines, i.e. {fk} is a finite set of non-zero indices. Then for every ε > 0

g+ ∈ B1/q+1−ε
q (Lq). (3.18)

Assume gδ = g+ + δdW and let λ and J be chosen according to (3.14).
For 0 < ε < 3/2 and for every 3/2 > τ ≥ ε and α = 1 − 3−2τ

3−2ε we obtain
the convergence rate

E(‖PJSλgδ − g+‖B2−τ
1 (L1)

) . (
√
| log δ|δ)α . (3.19)

This is an approximation result on the data side, which needs to be trans-
ferred to an estimate on the reconstruction side, see again [26].

Theorem 3.8 Let f+ =
∑
fkδ(· − k), g+ = A2f

+ and gδ = g+ + δdW . The
‘practical approach’ as described in the introduction produces a regularized
deconvolution of gδ as

fδλ = A−1
2 P0Sλg

δ. (3.20)

If λ is chosen according to (3.14) the following convergence rate holds for
every 3/2 ≥ τ > ε > 0:

E(‖fδλ − f+‖B−τ
1 (L1)

) . (
√
| log δ|δ)1−

3−2τ
3−2ε . (3.21)

We want to remark, that this theorem justifies the ‘practical approach’
of just plotting the remaining wavelet decomposition as described in the
reconstruction. Hence, this approach, which is a pure shrinkage technique,
can indeed be interpreted as a regularization method, which converges—
arbitrarily slow—to the delta sequence of the exact solution. The convergence
rate

(
1− 3−2τ

3−2ε

)
can be made better by choosing τ larger and ε smaller, but

this weakens the norm in which we measure the convergence. Moreover, a gen-
eralization to infinite sequences of delta peaks f+ =

∑
fkδ(· − k) is obvious

as long as
∑
k∈Z

|fk| <∞.

Remark 1. Implicitly, the practical approach makes use of the equivalent de-
scription of shrinkage methods via a variational approach. Minimizing
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‖Af − gδ‖L2 + α‖f‖L0

for an operator which can be diagonalized by a wavelet basis also leads to a
hard shrinkage approach. Hence, the practical approach can be regarded as
some type of Tikhonov regularization in Lp spaces. However, we use a different
noise model and measure the reconstruction error in a Besov space.

Approximate Kernels

The previous sections have analyzed regularization methods for reconstruc-
tion sequences of delta peaks from convolution data. These results were based
on the assumption, that the convolution kernel equals a B-spline. Obviously,
they immediately extend to other wavelet kernels, i.e. we obtain the same con-
vergence results for any convolution operator with kernel function ϕ whenever
ϕ can be extended to a bi-orthogonal wavelet bases with a norm equivalence
as stated in (3.1) and (3.2).

However, this is still very restrictive. In this section we address the case
of a general kernel k, see again [26].

Theorem 3.9 Let the assumptions of Theorem 3.8 be satisfied. Assume that
the kernel k is approximated by the scaling function ϕ: ‖k − ϕ‖Bκ

p (Lp) < ε,
and let Af = k ∗f . The ‘practical approach’ with kernel ϕ applied to the noisy
data gδ yields an approximation

E(‖f −A−1P0Sλg
δ‖B−τ

1 (L1)
) . ‖f‖B−ε

1 (L1)
+

(
δ
√
| log δ|

) 2(τ−ε)
3−2ε

.

Numerical Simulations

For the numerical simulations we use an artificial example as well as a real
world example from mass spectrography data. We start with an example where
the convolution kernel coincides with a B-spline scaling function. We will
discuss a kernel, which is only roughly approximated by the B-spline scaling
function in the following example.

First we are going to illustrate the practical approach as described in the
introduction for our model problem with simula data. We choose discrete
data sets of 512 data-points. The solution f+ is given by three delta-peaks of
different height and the convolution kernel is a hat function. In our case we
used a bi-orthogonal wavelet base of the class bior2.x and hence the recon-
structing scaling function is a hat function. The noisy data gδ was generated
by adding white noise of variance δ. We chose the shrinkage parameter λ
according to (3.14).

Figure 10 shows the true solution, the data, the reconstruction and an
illustration of the convergence rate for δ → 0. Note that the convergence for
δ → 0 shows very different behavior in different regions: slow convergence
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Fig. 10. Illustration of the performance of the practical approach. Upper left: The
true solution f+, upper right: the noisy data gδ with approximately 12% relative
error, lower left: the reconstruction by the practical approach, lower right: log-log
plot of the reconstruction error measured in B−τ

1 (L1) against the noise level.

0

5

10

15

20

100 200 300 400 500

0

2

4

100 200 300 400 500

0

2

4

100 200 300 400 500

1

2

5

10

‖
f
δ λ
−
f

+
‖

‖
f
δ λ
−
f

+
‖

0.001 0.01 0.1 1 10

δδ

Fig. 11. Illustration of the performance of Tikhonov regularization for the recon-
struction of delta peaks. Upper left: The true solution f+, upper right: the noisy
data gδ with approximately 12% relative error, lower left: the reconstruction by
Tikhonov regularization, lower right: log-log plot of the reconstruction error mea-
sured in H−1/2 against the noise level.
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Fig. 12. Illustration of the performance of the practical approach for the recon-
struction from overlapping peaks where the reconstruction scaling function does not
fit to the convolution kernel. Upper left: The true solution f+, upper right: the noisy
data gδ with approximately 12% relative error, lower left: the reconstruction by the
practical approach, lower right: log-log plot of the reconstruction error measured in
B−τ

1 (L1) against the noise level.
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Fig. 13. Deconvolution of real world data. Left: A section a spectrogram, right its
deconvolution by the practical approach.

interrupted by jumps. The slow convergence is the behavior which is expected
asymptotically (since we used τ = .1, formula (3.21) predicts a convergence
rate of 1/15 which is close to the results). The jumps have a simple explana-
tion: As observable in Figure 10 the reconstruction does not only show the
delta peaks but also a number of smaller peaks, which are a result of the
data errors which escape the shrinkage step. When noise level δ and shrinkage
parameter λ tend to zero it happens that more and more of these false peaks
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Fig. 14. Deconvolution of real world data. Top: 2D spectrum from drug metabolism,
bottom left: part of the spectrum, bottom right: deconvolved spectrum part

are wiped out and a jump in the reconstruction error occurs every time this
happens.

In a second experiment we compare the ‘practical approach’ with standard
Tikhonov regularization. We used the same data as for the first experiment
and minimized the functional Jγ(f) = ‖Af − gδ‖2

H−1/2 −α‖f‖2H−1/2 . To illus-
trate the convergence rate for δ → 0 we used the optimal regularization pa-
rameter γ ≈ δ1/2. The results shown in Figure 11 show the expected behavior:
oversmoothing of the regularized reconstruction and a very low convergence
rate.

In the last experiment we used as convolution kernel a B-spline of order
four but the same reconstruction scaling function (hat function) as in the other
experiment: a B-spline of order two. The data consists of overlapping peaks.
According to Theorem 3.9 the reconstruction by the practical approach leads
to very good results. As Figure 12 shows, the position of the major peaks is
reconstructed perfectly. The height of the major peaks is slightly wrong and
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there are some small sidepeaks in the reconstruction which are due to the fact
the kernel and reconstruction scaling function do not fit together.

We now present reconstruction results for 1D and 2D mass spectroscopy
data. Figure 13 shows the deconvolution of real world data from a
MALDI/SELDI-TOF mass spectrometer provided by an AutoFlex II by Bro-
ker Daltonics [31]. We have chosen a section of with a large peak consisting
of different isotopes and two small peaks. We deconvolved the data by the
practical approach with the bior2.8 bi-orthogonal wavelet base and thresh-
old and finest scale chosen by hand. The deconvolution of 2D LCMS mass
spectroscopy data follows the same outline. Figure 14 shows the practical ap-
proach applied to some real world data provided by Roche. The used data are
from drug discovery metabolite identification and show metabolites of a drug
produced by rat liver microsomes. The used spectrometer was a Sciex API
365 Triple Quadrupole operated in positive ion electrospray mode. Apply-
ing the practical approach is to calculate the wavelet decomposition with the
bior6.8 bi-orthogonal wavelet, cut off 90% of the detail coefficients, choose
a finest scale and plot the positions of the major coefficients.
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of the international congress of mathematicians (ICM), Madrid, Spain, August
22–30, 2006. Volume III: Invited lectures. Zürich: European Mathematical So-
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