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ABSTRACT

The Gabor transform is used to investigate non-stationary wind profiler radar signals, which are frequently occurring during
the seasonal bird migration. It is shown that the Gabor phasespace representation contains a wealth of information and
can be effectively used to separate the atmospheric signal component from the clutter. The crucial role of the dwell timeas
one of the primary sampling parameters of the wind profiler isdiscussed.

1. Introduction

Radar wind profilers (RWP) are being widely used for measuringwind velocities in the atmosphere. Recent reviews of the
technical and scientific aspects of RWP including its signal processing have been provided by Gage (1990); Röttger and
Larsen (1990); Doviak and Zrnic (1993) and Muschinski (2004). Especially the routine application by weather services
and the assimilation of the data in Numerical Weather Prediction Models is an indicator for the success of this remote
sensing technology, see e.g. Monna and Chadwick (1998); Bouttier (2001); Benjamin et al. (2004); St-James and Laroche
(2005); Ishihara et al. (2006). However, the operational application is not without difficulties. Sometimes, comparisons
with independent wind measurements show large and unacceptable differences between the profiler data and the reference.
In many cases these differences are clearly attributable toeither clutter echoes or Radio Frequency interference. Spurious
signals are often easily discernible in the Doppler spectrum by human experts, but not always correctly handled by the
automatic processing. For that reason, research on improvements in wind profiler signal processing has remained a very
active field over the last decade.

In this paper we discuss some properties of intermittent clutter signals. This is of importance because echoes from
migrating birds in spring and fall generate such clutter signals. Birds are effective targets for a wide range of radars from
X-band to UHF (Vaughn, 1985; Bruderer, 1997) and therefore also a problem in wind profiling (Ecklund et al., 1990;
Barth et al., 1994). The problem is well-known for more than adecade (Wilczak et al., 1995; Engelbart et al., 1998). The
susceptibility of wind profiler radar systems to bird echoesdepends primarily on wavelength and antenna characteristics.
It mostly affects L-band and UHF-systems, that is Boundary Layer and Tropospheric profilers, as discussed in Wilczak
et al. (1995). Intermittent clutter is an issue for both standard Doppler-beam swinging radars and imaging radar systems
(Cheong et al., 2006; Chen et al., 2007). If present, such spurious signals can cause a significant deterioration of the quality
of the derived winds. It is absolutely mandatory to avoid theassimilation of bird contaminated profiler wind data, as this
can have significant effects on the quality of the forecasts (Semple, 2005).

The occurrence of intermittent clutter echoes makes it necessary to either use extensive quality control procedures to
identify and skip contaminated data or to limit the data use to periods where bird migration is negligible. While the need for
an extensive manual data quality control and cleaning mightbe acceptable for research activities, it is surely not feasible
in any operational setting. Current state-of-the art profilers therefore run more or less sophisticated algorithms on site
to reduce bird contamination (Merritt, 1995; Jordan et al.,1997; Ishihara et al., 2006), but practical experience supports
the statement that the problem has not been fully resolved. It is therefore still an active research topic in RWP signal
processing.

Recently, a new approach based on a redundant Gabor frame decomposition of the time series followed by the statistical
filtering step has been suggested by Lehmann and Teschke (2008). While this method is capable of transient detection (for
quality control) and has obviously a great potential for effective intermittent clutter filtering, preliminary results show
that the sampling settings of the profiler, in particular thedwell time, are important for optimal clutter identification and
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suppression during bird migration. In this paper we show that the Gabor frame decomposition method also provides
hitherto unprecedented insight into the signal propertiesof the bird transients, because the time-frequency structure of
the signal can be easily visualized through the Gabor spectrogram. This offers a new way of looking at the data beyond
the raw time series and the Doppler spectrum and therefore provides opportunities for comprehensive investigation of the
properties of meteorological and clutter signals.

2. The classical model of the radar raw signal

The classical RWP signal model assumption is that the demodulated discrete voltage sequence at the receiver output can
be written as

S[k] = I [k]eiωk∆t +N[k], (1)

whereI [k] ∼ N(0,σ2
I ) andN[k] ∼ N(0,σ2

N) are independent complex zero-mean Gaussian random vectorsdescribing
the atmospheric signal and the receiver noise, respectively (Zrnić, 1979),∆t is the sampling interval of the sequence andω
the mean Doppler frequency. FurthermoreI [k] is narrowband compared to the receiver bandwidth and|ω| ≤ π/∆t (Nyquist
criterion). BecauseS[k] is the result of the demodulation of a real valued zero-mean and stationary Gaussian random
process, the resulting Gaussian complex random process is also wide-sense stationary and zero-mean. Furthermore, the
sequence has a vanishing pseudo-covariance, that is we haveE(S[k]S[l]) = 0.

BecauseS[k] is Gaussian, it is completely characterized through its covariance matrixR with entries

(R)k,l = Cov(S[k],S[l]) = E(S[k]S̄[l])

= E(I [k]Ī [l])eiω(k−l)∆t +E(N[k]N̄[l])

= σ2
I ρ[k− l]eiω(k−l)∆t +σ2

Nδk−l,0,

whereρ is specified below. For the autocovariance function, we have

ACov(k) = σ2
I ρ[k]eiωk∆t +σ2

Nδk,0 = σ2ρ[k] , (2)

where we set

σ2 := σ2
I +σ2

N and ρ[k] :=
σ2

I ρ[k]eiωk∆t +σ2
Nδk,0

σ2
I +σ2

N
.

The autocorrelation functionρ[k] is typically assumed to follow a Gaussian correlation model, which corresponds to a
Gaussian signal peak in the power spectrum. If the spectral width of the signal isw, then we have (Zrnić, 1979; Frehlich
and Yadlowsky, 1994)

ρ[k] = e−2π2w2k2∆t2
. (3)

Note that this Gaussian correlation model must not be confused with the characterization of the random process as
Gaussian, which covers a much wider class of signals. The assertions are normally very well justified and therefore often
used in simulations of the radar signal (Zrnić, 1975; Frehlich and Yadlowsky, 1994; Muschinski et al., 1999). Furthermore,
stationarity has to be assumed over typical dwell-times ofO (1 minute). While this is a classical assumption in radar
signal processing (Zrnić, 1975, 1979; Woodman, 1985; Frehlich and Yadlowsky, 1994;Lottman and Frehlich, 1997), it
is typically unknown to which extent this assumption can be made safely. Apparently, this points to a rarely discussed
problem in wind profiler signal processing, namely the (optimal) selection of dwell timeTd .



3. The problem of optimal dwell time

Wind profiler signal processing is by and large based on spectral estimation. The theory of spectral estimation in turn
is closely related to the theory of stationary random processes. As a matter of fact, the basic motivation for studying
the power spectrum of a stationary process is the Cramer spectral representation theorem. It states that every stationary
random process can be decomposed into a sum of sinusoidal components with uncorrelated random coefficients. This
is the analogue to the Fourier representation of deterministic functions (Priestley, 1981; Thomson, 1982; Brockwell and
Davies, 1991; Percival and Walden, 1993). Of course one can also define the power spectrum as the Fourier transform of
the autocovariance function of a process, but the interpretation through Cramer’s theorem provides clearly more insight.

For nonstationary processes, it is certainly possible to compute a power spectrum but its interpretation will be difficult,
if not impossible, because the spectrum alone will not suffice to fully describe the process as in the case for stationary
processes. The calculation of a Doppler (power) spectrum for a nonstationary receiver signal necessarily leads to a loss of
information, because phase relations between frequency components are suppressed∗. One must conclude that stationarity
of the radar receiver signal for some time interval (often termed quasi-stationarity or almost stationarity) has necessarily to
be assumed if the estimation of the Doppler spectrum is to make sense. This instantly prompts again for the question of
dwell time.

We follow Lottman and Frehlich (1997) in the definition of dwell time asthe total observation time required for the
non-parametric estimation of a Doppler spectrum, this definition includes spectral (or incoherent) integration, but ignores
signal processing time for convenience. Note that dwell time is defined differently by several authors, see e.g. Strauch
et al. (1984).

It is known that one can obtain a meaningful and valid measurement of the Doppler shift with dwell times of 1 s as
discussed in Muschinski (2004). On example is the so-calledTurbulent Eddy Profiler (TEP) (Mead et al., 1998), where
typical dwell times (selected after the measurement) are ranging from about 2 to 8 s. However, this is in some contrast
to most wind profiling applications, where dwell times typically range from about 15 s (Böhme et al., 2004) to more than
100 s (Merceret, 2000), with values of around 30 s being most typical. This large variability is likely an indication that
the selection of dwell time is usually not regarded as a big issue in practice. However, from a theoretical point of view,
the situation is clearly unsatisfactory. Obviously, the statistics of the received signal can only be stationary for a limited
amount of time (quasi-stationarity). The maximum time period for which stationarity can be assumed is unknown because
this obviously depends on the (a-priori) unknown properties of the (turbulent) scattering medium.

Of course it is of interest to achieve the highest possible temporal resolution in the determination of the Doppler
moments. However, determining the Doppler moments is a statistical estimation problem due to the ubiquitous presence
noise in the raw data and this calls for longer observation times to reduce the estimation error to an acceptable value. Also,
the minimum-resolvable spectrum width depends on dwell time, because the velocity resolution of the discrete Fourier
spectrum is∝ (Td)

−1. The advantage of using longer dwell times simply stems fromthe fact that first the errors of the
moment estimators are indirectly proportional to the observation time or dwell time, e.g. (Woodman and Guillen, 1974)
and second the spectral resolution is improved. The latter might also be required for the identification of narrow-band RFI.

Choosing the dwell time thus essentially balances time and frequency resolution and also accuracy and signal de-
tectability; it is obviously largely depending on the signal-to-noise ratio of the signal and the desired frequency resolution.
It appears that this interesting question has not adequately been addressed in the literature on profiler signal processing. A
brief discussion of the problem can be found in Strauch et al.(1984). Basically they state that the contribution of dwell
time to the estimated spectral width (Gossard et al., 1998; White et al., 1999) should be negligible. However, both the true
spectral width of the radar signal and the possible deviations from its stationarity are unknown. It thus appears that an
a-priori estimation of the optimal dwell time is not possible. We suggest that the simultaneous time-frequency analysis of
the radar signal, as described in our paper, can be used to further investigate this problem.

4. Time-frequency signal representation using a Gabor frame approach

Although they contain exactly the same information, neither the pure time representation of a transient signal (the complex
time series of the demodulated voltage signal at the receiver output), nor its (complex) Fourier transform as a pure frequency
representation (spectrum) are optimal representations toanalyze the information content of non-stationary signals. It is

∗Note that even for stationary processes, a single signal realization can only be retrieved from the full (complex) Fourier spectrum.



therefore tempting to look for an intermediate representation that aims at the joint time-frequency structure of the data.
This is especially important for filtering: If we are able to separate stationary and nonstationary signal components in
such a representation, then we might be able to suppress the nonstationary clutter part while leaving the stationary signal
component essentially intact.

A quite natural way to analyze a continuous signal simultaneously in time and frequency is provided by the windowed
Fourier transform (WFT), see Gabor (1946); Daubechies (1992); Kaiser (1994); Mallat (1999). It is essentially an exten-
sion of the well-known Fourier transform, where time localization is achieved by a pre-windowing of the signal with a
normalized window functionh ∈ L

2(R). For any given functionS ∈ L
2(R), the WFT is defined as

VhS(τ,ω) =
Z +∞

−∞
S(t)h(t − τ)e−iωtdt . (4)

The operatorVh maps isometrically betweenL2(R) andL
2(R2), that is a one-dimensional function/signal is with no

loss of energy transformed via the WFT into a two-dimensionalfunction depending on both timeτ and frequencyω. The
(τ,ω)-plane is called the time-frequency (TF) plane or briefly thephase space. This representation was suggested by Gabor
(1946) to illustrate thatboth time and frequency are legitimate references for describing a signal. The squared modulus of
VhS is called the spectrogram, denoted by

PhS(τ,ω) = |VhS(τ,ω)|2 , (5)

and provides a measure for the signal energy in the time-frequency neighborhood of the point(τ,ω) and thus insight
about the time-frequency structure ofS. The resolution in time and frequency is controlled by the window functionh(t),
but due to Heisenberg’s uncertainty relation, there is no arbitrary resolution in time and frequency simultaneously, i.e.
a point-wise frequency description in time domain and a point-wise time description in frequency domain is impossible.
Formally, one considers in the uncertainty context for somecentralized signalh with ‖h‖= 1, time and frequency variances

σ2
t =

Z +∞

−∞
t2|h(t)|2dt σ2

ω =
1
2π

Z +∞

−∞
ω2|ĥ(ω)|2dω (6)

for which the Heisenberg uncertainty relation yields

σt ·σω ≥
1
2

. (7)

It can be shown, that equality in (7) is achieved whenh is a translated, modulated or scaled version of the Gaussianfunc-
tion (equality means achieving optimal resolution in the time-frequency plane). Their time-frequency spread is visualized
through a rectangle with widthsσt andσω in the TF-plane, this is called a Heisenberg box - see Figure 1.

Since the WFT is an isometry, the inversion of the mapVh is performed by its adjoint,

〈S,S〉
L2(R) = ‖S‖2

L2(R) = ‖VhS‖2
L2(R2)

= 〈VhS,VhS〉
L2(R2) = 〈V ∗

h VhS,S〉
L2(R)

and therefore

S(t) = V ∗
h VhS(t) =

1
2π

ZZ
R2

VhS(τ,ω)h(t − τ)eiωtdωdτ . (8)

This provides an analysis and synthesis method for signals with finite energy. For discrete signals, however, the
continuous transforms (4) and (8) would create very redundant and inefficient representations of the signal, therefore
discretized versions need to be developed. This leads to theconcept of frames, which is detailed in Lehmann and Teschke
(2008). For the problem at hand, however, those technical details can be omitted and it suffices to explain the spectrogram
through the WFT (which is actually computed through a discrete frame).



Figure 1. Schematic representation of the time-frequency plane and the Heisenberg-box (resolution) of the window functionhτ,ω(t),
centered at timeτ = t0 and frequencyω = ω0. Time resolution is indicated byσt , frequency resolution byσω. The Heisenberg theorem
states,that the area of the rectangle can never be smaller than 1/2.

5. Signal characteristics during bird migration

The classical signal model of equation (1) is widely used in theoretical considerations and usually quite adequate. As an
example, we use the method of Zrnić (1975) to simulate a signal in line with the classical signal model, which contains
only noise and a stationary atmospheric component. In the frequency domain, the atmospheric signal peak is assumed to
be a Gaussian centered atfd = ω/2π = −10.9s−1 and with a spectral width ofw = 0.9s−1. A discrete spectrogram of this
signal is shown in Figure 2. The atmospheric signal component is represented as a horizontal line (stationarity) centered at
the prescribed Doppler frequency. Noise is spread over the complete TF plane.

However, experience shows that the classical signal model must sometimes be extended by adding a clutter component
(Muschinski et al., 2005):

S[k] = I [k]eiωk∆t +N[k]+C[k] . (9)

Clutter is by definition the totality of undesired echoes andinterfering signals, therefore it is impossible to easily
generalize the properties ofC[k]. In the case of RWP, clutter includes in particular echoes from airborne objects such as
aircraft and birds as well as returns from the ground. Interfering signals may be caused by other radio transmitters operating
in the RWP receiver band. In this paper, we restrict ourselvesto intermittent clutter signals.

Examples of intermittent clutter signals have been published in a number of papers: Wilczak et al. (1995) described the
distinct characteristic of bird contaminated I and Q data when seen in an A-scope display, but the shown time series taken
with a 924 MHz RWP is only 0.5 s long, which is too short to see itsessential characteristics. Jordan et al. (1997) show
an example of a 30 s long time series taken with a 915 MHz RWP during bird migration, which exhibits a variation in the
envelope of the signal due to modulation of signal amplitudeby the antenna beam pattern. Another example of intermittent
clutter caused by airplanes and a simple theoretical model is given by Boisse et al. (1999). The most distinct feature here
is also the time-dependent amplitude of the signal. A 19 s time series of a 482 MHz RWP containing an airplane echo is
discussed in Muschinski et al. (2005). When data containing intermittent clutter components are compared to both clear
air and ground clutter signals (see Muschinski et al. (2005)for an example), it is very obvious, that the main differenceis
the transient character of the intermittent clutter signalcomponent. Following Friedlander and Porat (1989), we define a
transient signal as a signal whose duration is short to the observation interval, in our case the dwell time. Such a behavior
clearly reflects a nonstationarity of the underlying scattering process.
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Figure 2. Gabor phase space representation of a simulated RWP signal containing only noise and a stationary signal component. The
x-axis shows time (in seconds) and the y-axis frequency (in Hz). Colorcontours (logarithmic scaling in dB) denote the power of the
Gabor coefficients.

While it is instructive to take a look at a few examples, it appears that the properties of the intermittent clutter component
have not been investigated systematically.

In the autumn of 2005, time series data of the coherently integrated I/Q signal of the RWP at Bayreuth, Germany
were saved in the wind low mode to get a unique dataset for the investigation of bird migration. For October 13, it was
subjectively judged that the data showed a maximum of bird echoes. This day was therefore selected as a test case for the
algorithm proposed by Lehmann and Teschke (2008). The time series (not shown here) have a length of about 35 s and
the nonstationarity of the observed clutter echoes is striking. However, during reprocessing of the complete dataset it was
revealed that the dwell time used was apparently rather short to guarantee that every observed intermittent clutter signal
indeed exhibits a clear transient behavior. Sometimes the duration of the clutter signal component was on the order of the
dwell time instead. If this is the case, then signal separation may fail and filtering may become challenging.

A systematic investigation seems therefore to be necessary. The difficulty is of course the large data amount of the time
series. For the 482 MHz wind profiler of DWD, the daily file size of only the low mode data is about 3 Gigabyte. The
development of an automated and efficient processing thus isa prerequisite for such a task. First test data were obtained
during the bird migration season in autumn in Eastern Germany on October 26, 2007. Note that this special measurement
used a comparably long dwell time of 166.6 seconds. Let us consider two examples from this dataset:

Figure 3 shows the time series obtained for the range gate centered at 624 m agl, and the corresponding Gabor phase
space representation is shown in Figures 4. Several transients of different strength can be seen in the time representation,
the strongest occurs at about 55 s into the dwell. The Gabor spectrogram reveals a number of additional interesting
features: The transients are clearly visible and widely scattered in the TF-plane, with the strongest one having a signal
power of almost 130 dB. Note that the linear dynamic range of the radar is limited to about 90 dB. Besides the intermittent
clutter signals, an atmospheric return is visible at a frequency of about -10 Hz. Additionally, a weaker and spectrally
narrow ground clutter return can be seen at zero Doppler frequency. Both the atmospheric and the ground clutter signal
components are approximately stationary over the full length of the dwell.

Another example is shown in Fig 5 (time series) and Fig 6 (Gabor spectrogram). This was obtained at the range gate
centered at about 2796 m agl with the dwell starting at 20:58:32 UTC. Remarkable is here the duration of the strong
transient, which is on the order of the dwell times typicallyused in routine wind profiling. The spectrogram shows the
atmospheric signal component as a quasi-stationary (horizontal) line at a frequency of about -2 Hz. If the dwell time would
have been much shorter (e.g. about 30 s, a typical value in routine operation) and furthermore by chance coincide with the



Figure 3. Demodulated receiver signal of the 482 MHz wind profiler at Lindenberg, obtained during bird migration on Oct 26, 2007.
The total length of the time series is 166.6 s.
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Figure 4. Time-Frequency analysis (Gabor spectrogram) of the signal shown inFig 3. The x-axis shows time (in seconds) and the y-axis
frequency (in Hz). Color contours (logarithmic scaling in dB) denote signal power. Frequent, but short bird transients of varying strength
are visible.

bird event, it would have been extremely difficult, if not impossible, to identify the atmospheric return. Only a thresholding
based on signal power could then be attempted to flag the data as invalid.

Both examples show that more work is indeed needed to investigate the typical signal properties during bird migration
episodes, to be able to optimize both processing and sampling settings for operational radar wind profiler systems. The
long-standing theoretical question of an optimal dwell time length in wind profiler operation thus becomes a new practical
relevance.



Figure 5. Demodulated receiver signal of the 482 MHz wind profiler at Lindenberg, obtained during bird migration on Oct 26, 2007.
The total length of the time series is 166.6 s.
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Figure 6. Time-Frequency analysis (Gabor spectrogram) of the signal shown inFig 5. The x-axis shows time (in seconds) and the y-axis
frequency (in Hz). Color contours (logarithmic scaling in dB) denote signal power. Note the strong bird transient, having a total duration
of about 90s. The maximum signal power occurs for about 30 s, which is the same order as the typically used dwell times in routine
wind profiling.
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