Radar wind profiler signal characteristics during bird migr ation episodes
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ABSTRACT

The Gabor transform is used to investigate non-stationag profiler radar signals, which are frequently occurringiag

the seasonal bird migration. It is shown that the Gabor pbpaee representation contains a wealth of information and
can be effectively used to separate the atmospheric signgdanent from the clutter. The crucial role of the dwell tiase
one of the primary sampling parameters of the wind profilelissussed.

1. Introduction

Radar wind profilers (RWP) are being widely used for measusimgl velocities in the atmosphere. Recent reviews of the
technical and scientific aspects of RWP including its sigmatessing have been provided by Gage (1990); Réttger and
Larsen (1990); Doviak and Zrnic (1993) and Muschinski (20®specially the routine application by weather services
and the assimilation of the data in Numerical Weather PtiedidViodels is an indicator for the success of this remote
sensing technology, see e.g. Monna and Chadwick (1998)tiBo(2001); Benjamin et al. (2004); St-James and Laroche
(2005); Ishihara et al. (2006). However, the operationgliaation is not without difficulties. Sometimes, compans
with independent wind measurements show large and unatdemtifferences between the profiler data and the reference
In many cases these differences are clearly attributatdéher clutter echoes or Radio Frequency interferenceri@msi
signals are often easily discernible in the Doppler spectby human experts, but not always correctly handled by the
automatic processing. For that reason, research on immeawvs in wind profiler signal processing has remained a very
active field over the last decade.

In this paper we discuss some properties of intermitteriterisignals. This is of importance because echoes from
migrating birds in spring and fall generate such cluttenalg. Birds are effective targets for a wide range of radans f
X-band to UHF (Vaughn, 1985; Bruderer, 1997) and therefége a problem in wind profiling (Ecklund et al., 1990;
Barth et al., 1994). The problem is well-known for more thateaade (Wilczak et al., 1995; Engelbart et al., 1998). The
susceptibility of wind profiler radar systems to bird echdepends primarily on wavelength and antenna charactevisti
It mostly affects L-band and UHF-systems, that is Boundaaydr and Tropospheric profilers, as discussed in Wilczak
et al. (1995). Intermittent clutter is an issue for both dd Doppler-beam swinging radars and imaging radar system
(Cheong et al., 2006; Chen et al., 2007). If present, such@misignals can cause a significant deterioration of tladitgu
of the derived winds. It is absolutely mandatory to avoidaksimilation of bird contaminated profiler wind data, as thi
can have significant effects on the quality of the forece&Stsr(ple, 2005).

The occurrence of intermittent clutter echoes makes it $ssug to either use extensive quality control procedures to
identify and skip contaminated data or to limit the data eggetriods where bird migration is negligible. While the need f
an extensive manual data quality control and cleaning nbghdcceptable for research activities, it is surely notiiéas
in any operational setting. Current state-of-the art pedfittherefore run more or less sophisticated algorithmsiten s
to reduce bird contamination (Merritt, 1995; Jordan etE97; Ishihara et al., 2006), but practical experience supp
the statement that the problem has not been fully resolved therefore still an active research topic in RWP signal
processing.

Recently, a new approach based on a redundant Gabor frammpesition of the time series followed by the statistical
filtering step has been suggested by Lehmann and Teschk®)(20@ile this method is capable of transient detection (for
quality control) and has obviously a great potential foeefive intermittent clutter filtering, preliminary ressiishow
that the sampling settings of the profiler, in particular duweell time, are important for optimal clutter identificatiand
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suppression during bird migration. In this paper we show tha Gabor frame decomposition method also provides
hitherto unprecedented insight into the signal propeniethe bird transients, because the time-frequency streiati

the signal can be easily visualized through the Gabor spgretm. This offers a new way of looking at the data beyond
the raw time series and the Doppler spectrum and thereforédas opportunities for comprehensive investigatiorhef t
properties of meteorological and clutter signals.

2. The classical model of the radar raw signal

The classical RWP signal model assumption is that the deratatubliscrete voltage sequence at the receiver output can
be written as

SIK = I[k]e“*¥2 + N[K], (1)

wherel [k ~ N(0,0?) andN[k] ~ N(0,02) are independent complex zero-mean Gaussian random veesesbing
the atmospheric signal and the receiver noise, respect@ahic, 1979) At is the sampling interval of the sequence and
the mean Doppler frequency. Furthermbjié is narrowband compared to the receiver bandwidth|eet 17/At (Nyquist
criterion). Becaus&[K] is the result of the demodulation of a real valued zero-meahstationary Gaussian random
process, the resulting Gaussian complex random proce$soisvade-sense stationary and zero-mean. Furthermore, the
sequence has a vanishing pseudo-covariance, that is weEbBkES[l]) = 0.

BecauseS[k] is Gaussian, it is completely characterized through iteiance matrix® with entries
(Rt = Cov(SK],S[l]) = E(SKIS[])
= E(KI[])e DA+ E(NKIN]I])

oplk— 1] DA 1 R o,

wherep is specified below. For the autocovariance function, we have

ACov(k) = a?p[KId* + 0§80 = 0%p[K , 2)
where we set )
oZp[K XA + 02 8¢ 0
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The autocorrelation functiop[k] is typically assumed to follow a Gaussian correlation mpedich corresponds to a
Gaussian signal peak in the power spectrum. If the spectdihwf the signal isv, then we have (Zrigi, 1979; Frehlich
and Yadlowsky, 1994)

p[k] _ e72T12W2k2At2 ) (3)

Note that this Gaussian correlation model must not be cedfugth the characterization of the random process as
Gaussian, which covers a much wider class of signals. Ttestasss are normally very well justified and therefore often
used in simulations of the radar signal (Zrnl975; Frehlich and Yadlowsky, 1994; Muschinski et al99)p® Furthermore,
stationarity has to be assumed over typical dwell-time® gf minute. While this is a classical assumption in radar
signal processing (Zroj 1975, 1979; Woodman, 1985; Frehlich and Yadlowsky, 18®4tman and Frehlich, 1997), it
is typically unknown to which extent this assumption can kedesafely. Apparently, this points to a rarely discussed
problem in wind profiler signal processing, namely the (ot selection of dwell tim&y.



3. The problem of optimal dwell time

Wind profiler signal processing is by and large based on sgeestimation. The theory of spectral estimation in turn
is closely related to the theory of stationary random preeses As a matter of fact, the basic motivation for studying
the power spectrum of a stationary process is the Crametrapegpresentation theorem. It states that every statjona
random process can be decomposed into a sum of sinusoidalooemts with uncorrelated random coefficients. This
is the analogue to the Fourier representation of detertidrfisnctions (Priestley, 1981; Thomson, 1982; Brockweitla
Davies, 1991; Percival and Walden, 1993). Of course one lsandafine the power spectrum as the Fourier transform of
the autocovariance function of a process, but the inteapiogt through Cramer’s theorem provides clearly more sig

For nonstationary processes, it is certainly possible topuge a power spectrum but its interpretation will be difficu
if not impossible, because the spectrum alone will not suffacfully describe the process as in the case for stationary
processes. The calculation of a Doppler (power) spectrura fmnstationary receiver signal necessarily leads tosadbs
information, because phase relations between frequemapaoents are suppresseddne must conclude that stationarity
of the radar receiver signal for some time interval (oftemied quasi-stationarity or almost stationarity) has neaely to
be assumed if the estimation of the Doppler spectrum is tcensekse. This instantly prompts again for the question of
dwell time.

We follow Lottman and Frehlich (1997) in the definition of diMéme asthe total observation time required for the
non-parametric estimation of a Doppler spectrum, this definition includes spectral (or incoherent) intéigra but ignores
signal processing time for convenience. Note that dweletimndefined differently by several authors, see e.g. Strauch
et al. (1984).

It is known that one can obtain a meaningful and valid measarg of the Doppler shift with dwell times of 1 s as
discussed in Muschinski (2004). On example is the so-cdlletulent Eddy Profiler (TEP) (Mead et al., 1998), where
typical dwell times (selected after the measurement) arging from about 2 to 8 s. However, this is in some contrast
to most wind profiling applications, where dwell times tyadlg range from about 15 s (Béhme et al., 2004) to more than
100 s (Merceret, 2000), with values of around 30 s being nygstal. This large variability is likely an indication that
the selection of dwell time is usually not regarded as a k8gdsn practice. However, from a theoretical point of view,
the situation is clearly unsatisfactory. Obviously, thatistics of the received signal can only be stationary famétéd
amount of time (quasi-stationarity). The maximum time péffior which stationarity can be assumed is unknown because
this obviously depends on the (a-priori) unknown propsrtiethe (turbulent) scattering medium.

Of course it is of interest to achieve the highest possihtept@al resolution in the determination of the Doppler
moments. However, determining the Doppler moments is &ttatl estimation problem due to the ubiquitous presence
noise in the raw data and this calls for longer observatimesito reduce the estimation error to an acceptable valse, Al
the minimum-resolvable spectrum width depends on dweltitrecause the velocity resolution of the discrete Fourier
spectrum is (Tg)~X. The advantage of using longer dwell times simply stems ftoenfact that first the errors of the
moment estimators are indirectly proportional to the obestion time or dwell time, e.g. (Woodman and Guillen, 1974)
and second the spectral resolution is improved. The latigihtralso be required for the identification of narrow-bartd .R

Choosing the dwell time thus essentially balances time asgugncy resolution and also accuracy and signal de-
tectability; it is obviously largely depending on the sigt@noise ratio of the signal and the desired frequencygltg®n.
It appears that this interesting question has not adeguag¢ein addressed in the literature on profiler signal prangsa
brief discussion of the problem can be found in Strauch €t18i84). Basically they state that the contribution of dwell
time to the estimated spectral width (Gossard et al., 1998te/é¢hal., 1999) should be negligible. However, both the tru
spectral width of the radar signal and the possible deviatioom its stationarity are unknown. It thus appears that an
a-priori estimation of the optimal dwell time is not possibWe suggest that the simultaneous time-frequency asalysi
the radar signal, as described in our paper, can be usedherfimvestigate this problem.

4. Time-frequency signal representation using a Gabor frare approach

Although they contain exactly the same information, neithe pure time representation of a transient signal (thepbexn
time series of the demodulated voltage signal at the receittput), nor its (complex) Fourier transform as a puredisty
representation (spectrum) are optimal representatioanatyze the information content of non-stationary sign#lss

*Note that even for stationary processes, a single signal realizatiombaheoretrieved from the full (complex) Fourier spectrum.



therefore tempting to look for an intermediate repres@niahat aims at the joint time-frequency structure of thtada
This is especially important for filtering: If we are able tepgarate stationary and nonstationary signal components in
such a representation, then we might be able to suppresstistationary clutter part while leaving the stationarnsig
component essentially intact.

A quite natural way to analyze a continuous signal simulaséy in time and frequency is provided by the windowed
Fourier transform (WFT), see Gabor (1946); Daubechies (1 9¢iser (1994); Mallat (1999). It is essentially an exten-
sion of the well-known Fourier transform, where time lozation is achieved by a pre-windowing of the signal with a
normalized window functiot € I.2(R). For any given functiors € L?(R), the WFT is defined as

ST = [ St)h(t—T)e i | @)

The operatol, maps isometrically betwedi?(R) andIL?(R?), that is a one-dimensional function/signal is with no
loss of energy transformed via the WFT into a two-dimensidma¢tion depending on both timeand frequencyy. The
(t,w)-plane is called the time-frequency (TF) plane or brieflygthase space. This representation was suggested by Gabor
(1946) to illustrate thaboth time and frequency are legitimate references for describing a signal. The squared modulus of
W Sis called the spectrogram, denoted by

PhS(T, ) = [VhS(T, w)|?, (5)

and provides a measure for the signal energy in the timasecy neighborhood of the poifit,w) and thus insight
about the time-frequency structure &f The resolution in time and frequency is controlled by thadeiw functionh(t),
but due to Heisenberg’s uncertainty relation, there is ftrary resolution in time and frequency simultaneously, i
a point-wise frequency description in time domain and a {paise time description in frequency domain is impossible.
Formally, one considers in the uncertainty context for soemeralized signai with ||h|| = 1, time and frequency variances

oo o
o§=/ £2|h(t) |t oﬁ,Z%T/ w?|A(w) dw (6)

for which the Heisenberg uncertainty relation yields

1
Gtﬂmzi. (7)

It can be shown, that equality in (7) is achieved whésa translated, modulated or scaled version of the Gauisian
tion (equality means achieving optimal resolution in tmdifrequency plane). Their time-frequency spread is Vize
through a rectangle with widths ando,, in the TF-plane, this is called a Heisenberg box - see Figure 1

Since the WFT is an isometry, the inversion of the g performed by its adjoint,

<S S>IL2(R) = ||SH§‘2(R) = ||VhSHi2(R2)
= (VhSWhSr2r2) = W VhS S)L2(R)

and therefore

S(t) = VEVhS(t) = %1 / /R VhS(T @)h(t — 1) doodlt . ®)

This provides an analysis and synthesis method for signdls fimite energy. For discrete signals, however, the
continuous transforms (4) and (8) would create very rednnhdad inefficient representations of the signal, therefore
discretized versions need to be developed. This leads tootieept of frames, which is detailed in Lehmann and Teschke
(2008). For the problem at hand, however, those technitallsean be omitted and it suffices to explain the spectragra
through the WFT (which is actually computed through a dischetme).
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Figure 1. Schematic representation of the time-frequency plane and the Heigdmide(resolution) of the window functioh ¢(t),
centered at time = tp and frequencyo = wy. Time resolution is indicated by, frequency resolution bg,,. The Heisenberg theorem
states,that the area of the rectangle can never be smaller than 1/2.

5. Signal characteristics during bird migration

The classical signal model of equation (1) is widely usech&otetical considerations and usually quite adequate.nAs a
example, we use the method of Zr(iL975) to simulate a signal in line with the classical signadel, which contains
only noise and a stationary atmospheric component. In #ggéncy domain, the atmospheric signal peak is assumed to
be a Gaussian centeredfat= w/2m= —10.9s~! and with a spectral width off = 0.9s71. A discrete spectrogram of this
signal is shown in Figure 2. The atmospheric signal compbisaepresented as a horizontal line (stationarity) ceutet

the prescribed Doppler frequency. Noise is spread overdhwlete TF plane.

However, experience shows that the classical signal modst sometimes be extended by adding a clutter component
(Muschinski et al., 2005):

Slk] = I K€ - N[K] +C[K] . 9)

Clutter is by definition the totality of undesired echoes ameérfering signals, therefore it is impossible to easily
generalize the properties &fk]. In the case of RWP, clutter includes in particular echoesifairborne objects such as
aircraft and birds as well as returns from the ground. Ieténf) signals may be caused by other radio transmittersatipgr
in the RWP receiver band. In this paper, we restrict oursdtv@gtermittent clutter signals.

Examples of intermittent clutter signals have been pubtish a number of papers: Wilczak et al. (1995) described the
distinct characteristic of bird contaminated | and Q datamvbeen in an A-scope display, but the shown time series taken
with a 924 MHz RWP is only 0.5 s long, which is too short to seefisential characteristics. Jordan et al. (1997) show
an example of a 30 s long time series taken with a 915 MHz RWmdunird migration, which exhibits a variation in the
envelope of the signal due to modulation of signal amplitogléhe antenna beam pattern. Another example of interniitten
clutter caused by airplanes and a simple theoretical medgvien by Boisse et al. (1999). The most distinct feature her
is also the time-dependent amplitude of the signal. A 19 e Beries of a 482 MHz RWP containing an airplane echo is
discussed in Muschinski et al. (2005). When data contaimtgyinittent clutter components are compared to both clear
air and ground clutter signals (see Muschinski et al. (2005xn example), it is very obvious, that the main differersce
the transient character of the intermittent clutter sigraahponent. Following Friedlander and Porat (1989), we dedin
transient signal as a signal whose duration is short to teerehtion interval, in our case the dwell time. Such a befravi
clearly reflects a nonstationarity of the underlying scattpprocess.



Figure 2. Gabor phase space representation of a simulated RWP signal contaihingpse and a stationary signal component. The
x-axis shows time (in seconds) and the y-axis frequency (in Hz). Gulotours (logarithmic scaling in dB) denote the power of the
Gabor coefficients.

While itis instructive to take alook at a few examples, it agoehat the properties of the intermittent clutter commbne
have not been investigated systematically.

In the autumn of 2005, time series data of the coherenthgrated 1/Q signal of the RWP at Bayreuth, Germany
were saved in the wind low mode to get a unique dataset fomthessfigation of bird migration. For October 13, it was
subjectively judged that the data showed a maximum of bilwes. This day was therefore selected as a test case for the
algorithm proposed by Lehmann and Teschke (2008). The tariess(not shown here) have a length of about 35 s and
the nonstationarity of the observed clutter echoes isisgikHowever, during reprocessing of the complete datases
revealed that the dwell time used was apparently rathet sh@uarantee that every observed intermittent cluttanadig
indeed exhibits a clear transient behavior. Sometimesuhatidn of the clutter signal component was on the order ef th
dwell time instead. If this is the case, then signal sepamatiay fail and filtering may become challenging.

A systematic investigation seems therefore to be necesBaeydifficulty is of course the large data amount of the time
series. For the 482 MHz wind profiler of DWD, the daily file siZeonly the low mode data is about 3 Gigabyte. The
development of an automated and efficient processing thaipisrequisite for such a task. First test data were obtained
during the bird migration season in autumn in Eastern GeyroarOctober 26, 2007. Note that this special measurement
used a comparably long dwell time of 166.6 seconds. Let usidentwo examples from this dataset:

Figure 3 shows the time series obtained for the range gatereghat 624 m agl, and the corresponding Gabor phase
space representation is shown in Figures 4. Several traagiédifferent strength can be seen in the time representat
the strongest occurs at about 55 s into the dwell. The Gabestram reveals a number of additional interesting
features: The transients are clearly visible and widelytspad in the TF-plane, with the strongest one having a sigha
power of almost 130 dB. Note that the linear dynamic rangéefadar is limited to about 90 dB. Besides the intermittent
clutter signals, an atmospheric return is visible at a feeqy of about -10 Hz. Additionally, a weaker and spectrally
narrow ground clutter return can be seen at zero Doppleuéecy. Both the atmospheric and the ground clutter signal
components are approximately stationary over the fulltieiof the dwell.

Another example is shown in Fig 5 (time series) and Fig 6 (&apectrogram). This was obtained at the range gate
centered at about 2796 m agl with the dwell starting at 285&TC. Remarkable is here the duration of the strong
transient, which is on the order of the dwell times typicalbed in routine wind profiling. The spectrogram shows the
atmospheric signal component as a quasi-stationary (g line at a frequency of about -2 Hz. If the dwell time Wwbu
have been much shorter (e.g. about 30 s, a typical value tmeooperation) and furthermore by chance coincide with the



Lindenberg 26.10.2007, Beam North, Height 624 m @ 19:00:21
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Figure 3. Demodulated receiver signal of the 482 MHz wind profiler at Lindegpebtained during bird migration on Oct 26, 2007.
The total length of the time series is 166.6 s.

Figure 4. Time-Frequency analysis (Gabor spectrogram) of the signal sholig B. The x-axis shows time (in seconds) and the y-axis
frequency (in Hz). Color contours (logarithmic scaling in dB) denotealigower. Frequent, but short bird transients of varying strength
are visible.

bird event, it would have been extremely difficult, if not iogsible, to identify the atmospheric return. Only a thréging
based on signal power could then be attempted to flag the slataadid.

Both examples show that more work is indeed needed to igagstithe typical signal properties during bird migration
episodes, to be able to optimize both processing and sagngditiings for operational radar wind profiler systems. The
long-standing theoretical question of an optimal dwelldilangth in wind profiler operation thus becomes a new praictic
relevance.



Lindenberg 26.10.2007, Beam East, Height 2796 m @ 20:58:32
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Figure 5. Demodulated receiver signal of the 482 MHz wind profiler at Lindegpebtained during bird migration on Oct 26, 2007.
The total length of the time series is 166.6 s.
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Figure 6. Time-Frequency analysis (Gabor spectrogram) of the signal shokig B The x-axis shows time (in seconds) and the y-axis
frequency (in Hz). Color contours (logarithmic scaling in dB) denoteaigower. Note the strong bird transient, having a total duration
of about 90s. The maximum signal power occurs for about 30 s,hiikithe same order as the typically used dwell times in routine
wind profiling.
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