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1 Introduction
The purpose of this paper is to report on recent approaches to reconstruction problems based on analog, or
in other words, infinite-dimensional, image and signal models. We describe three main contributions to this
problem. First, linear reconstructions from sampled measurements via so-called generalized sampling (GS).
Second, the extension of generalized sampling to inverse and ill-posed problems. And third, the combination
of generalized sampling with sparse recovery techniques. This final contribution leads to a theory and set
of methods for infinite-dimensional compressed sensing, or as we shall also refer to it, compressed sensing
over the continuum.

1.1 Inverse problems are typically infinite-dimensional
The motivation for considering infinite-dimensional models in signal and image reconstruction comes from
the observation that many inverse problems are based on continuous transforms acting on functions, as op-
posed to discrete transforms (matrices) acting on vectors. Arguably the two most important such transforms
are the Fourier and Radon transforms. In particular, the Fourier transform is defined by

Ff(ω) =
∫

Rd
f(x)e2πiω·x dx,

and if f ∈ L1(R2) we may define the Radon transformRf : S × R→ C (where S denotes the circle) by

Rf(θ, p) =
∫
〈x,θ〉=p

f(x) dm(x),

where dm denotes Lebesgue measure on the hyperplane {x : 〈x, θ〉 = p}.
The list of applications of these transforms is long and includes:

(i) Magnetic Resonance Imaging (MRI) (Guerquin-Kern, Häberlin, Pruessmann & Unser 2011)
(ii) X-ray Computed Tomography (Shepp & Srivastava 1978, Quinto 2006)

(iii) Thermoacoustic and Photoacoustic Tomography (Kuchment & Kunyansky 2011, Natterer & Wubbeling
2001, Kuchment 2006)

(iv) Electron Microscopy (Lawrence, Phan & Ellisman 2012, Leary, Saghi, Midgley & Holland 2013)
(v) Single Photon Emission Computerized Tomography (Heike 1986, Kuchment 2006)

(vi) Electrical Impedance Tomography (Borcea 2002, Kuchment 2006)
(vii) Reflection seismology (Bleistein, Cohen & Stockwell 2001, Beylkin 1985, De Hoop, Smith, Uhlmann

& Van der Hilst 2009)
(viii) Radar imaging (Roulston & Muhleman 1997, Borden & Cheney 2005)

(ix) Barcode scanners (Liu, Liu, Wang & Yang 2010)

Note that in X-ray tomography and its variants the sampling procedure is carried out for one angle at the
time. Thus, via the Fourier slice theorem, this procedure is equivalent to sampling the Fourier transform at
radial lines. For this reason, we can view both the Fourier and Radon transform recovery problems as that of
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reconstructing f from pointwise samples of its Fourier transform. As an inverse problem this problem can
be written as

g = Ff, f ∈ L2(Rd), (1.1)

where we are only given access to a finite set of pointwise values of g.
The purpose of this paper is to describe recovery algorithms for infinite-dimensional models such as

(1.1). A primary motivation for doing so is that many existing algorithms, including notably most com-
pressed sensing techniques, implicitly replace problems such as (1.1) with a finite-dimensional matrix-vector
model. However, doing so introduces a critical mismatch between the data (which arises from the continu-
ous system) and the model (Mueller & Siltanen 2012, Guerquin-Kern, Lejeune, Pruessmann & Unser 2012).
Such a discretization can quite easily lead to substandard reconstructions when applied to real data, or, more
perniciously, artificially good reconstructions when applied to inappropriately simulated data (the inverse
crime) (Hansen 2010, Kaipio & Somersalo 2007, Mueller & Siltanen 2012, Guerquin-Kern et al. 2012). We
shall discuss this further in §4. Note that such an issue is particularly prevalent in compressed sensing, where
the standard model for Fourier sampling replaces the continuous Fourier transform with its discrete analogue
(Foucart & Rauhut 2013).

1.2 Overview of the paper
We now provide a short overview of the paper.

1.2.1 Generalized sampling

In §2 we study the abstract problem of sampling and reconstruction in separable Hilbert spaces. More
precisely, given a Hilbert space H, an element f ∈ H, and two frames {ψj}j∈N and {ϕj}j∈N, we address the
recovery of f in terms of the system {ϕj}j∈N from its first n ∈ N measurements

f̂j = 〈f, ψj〉, j = 1, . . . , n (1.2)

with respect to the other frame {ψj}j∈N. This is done through the linear technique of generalized sampling
(GS), which we show to be numerically stable and quasi-optimal.

In a sense, GS describes the fundamental linear mapping from a frame {ψj}j∈N (the sampling frame) to
another frame {ϕj}j∈N (the reconstruction frame). An important example of this problem arises from the
Fourier sampling inverse problem (1.1). If we may assume the Fourier samples give rise to a exponential
frame for the Hilbert space L2(D), whereD is the domain of f , then the problem can be recast as recovering
f from the measurements (1.2). Generalized sampling allows one to reconstruct f in an another frame
{ϕj}j∈N, which can be chosen arbitrarily.

The choice of this frame is critically important in practice. Typically, we desire a frame in which f has
an expansion f =

∑
j∈N βjϕj where the coefficients βj decay rapidly as j → ∞, or are sparse, so that we

recover f to high accuracy from the finite set of measurements (1.2). For typical images and signals arising in
the applications listed in the previous section, wavelets are an obvious candidate. As we explain, GS allows
one to recover the first O (n) wavelet coefficients stably and accurately from the n Fourier measurements.

Having introduced GS, in §3 we consider its extension to the problem where the unknown element f ∈ X
is defined through the inverse problem

Af = g, f ∈ X, g ∈ Y, (1.3)

where X and Y are separable Hilbert spaces. Again we suppose that we are given access to finitely-many
measurements of the element g ∈ Y from some sampling frame {ψj}j∈N and seek to recover f in another
frame {ϕj}j∈N. The problem (1.3) is typically ill-posed, and therefore we are faced with regularization
issues. We discuss two treatments of this problem, both based on the singular value decomposition of A.

1.2.2 Compressed sensing over the continuum

In the second part of this paper, §4, we continue the development of GS by incorporating a sparsity-like struc-
ture into the signal f . This culminates in a theory and set of techniques for infinite-dimensional compressed
sensing.

In finite dimensions, compressed sensing (CS) concerns the recovery of a sparse vector in CN from a
small number of linear measurements. In the last decade, the theory and techniques of CS have become
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well-established, and it is now an intensive area of activity. However, there have been relatively few attempts
to extend CS to the infinite-dimensional setting. Fortunately, the insight provided by GS on linear recovery
in infinite dimensions points the way towards such an extension.

We commence §4 with a recap on standard CS theory. In particular, we introduce the three fundamental
principles of CS: namely, sparsity, incoherence and uniform random subsampling, and explain how they
allow for optimal reconstruction rates in the finite-dimensional setting. However, we also demonstrate that,
as mentioned above, solving fundamentally infinite-dimensional inverse problems using finite-dimensional
CS tools can quite easily lead to substandard reconstructions and inverse crimes.

Next we turn our attention to the infinite-dimensional setting. We first argue that in this setting one must
dispense with the finite-dimensional CS principles of sparsity, incoherence and uniform random subsam-
pling, and instead consider three new concepts: asymptotic sparsity, asymptotic incoherence and multilevel
random subsampling. Having done this, we then establish a theory of infinite-dimensional CS based on these
new principles, and show how this can be implemented using the standard approach of `1-minimization.

Perhaps surprisingly, the new theory in infinite dimensions also leads to novel insights in the finite-
dimensional setting. In particular, we explain how even in finite dimensions it is rare to have both sparsity
and incoherence, and indeed, asymptotic sparsity and asymptotic incoherence are also more realistic in this
setting as well. Fortunately, finite-dimensional theorems are simple corollaries of our main results in infinite
dimensions, and thus we also introduce new results in this setting.

1.2.3 Compressed sensing from Fourier measurements

Much as in the previous sections, one of the main applications of this work is to the Fourier sampling inverse
problem (1.1). Using wavelets or orthogonal polynomials as our sparsity basis, we show via both our theo-
rems and numerical experiments how effective infinite-dimensional compressed sensing can be. Specifically,
we demonstrate high accuracy reconstruction of signals and images using relatively few measurements.

Note that (finite-dimensional) CS for this problem was first investigated by Lustig et al. (Lustig, Donoho,
Santos & Pauly 2008) in application to MRI. However, even in finite dimensions, this problem is troublesome
for standard CS theory, since it turns out to be highly coherent. Empirically, it was found that sampling
uniformly at random in Fourier space gives a very poor reconstruction, and instead, many more samples
should be taken at low frequencies than at higher frequencies. Using the new principles of asymptotic
sparsity, asymptotic incoherence and multilevel random subsampling, our theory explains precisely why this
empirically-based approach works. This is shown in Figure 1. Further examples are presented in §4.

We conclude the paper with a discussion of three particular consequences that arise from this new theory.
First, in asymptotically sparse and asymptotically incoherent applications, the optimal sampling strategy will
always depends on the signal structure. In particular, there can be no optimal sampling strategy for all sparse
signals. Second, the well-known Restricted Isometry Property (RIP), although a popular tool in CS theory, is
not witnessed in such applications. Hence, any RIP-based CS theory does not adequately explain the types
of reconstruction results witnessed in practice.

Our third and final conclusion is that the success of compressed sensing is resolution dependent. At
low resolutions, there is neither sufficient sparsity nor sufficient incoherence to give rise to high-quality
reconstructions via CS. However, as the resolution increases, substantially better reconstructions become
possible. In particular, CS with the appropriate subsampling strategy allows one to recover the fine details of
images in a way that is not possible with conventional reconstruction strategies.

1.3 Relation to previous work
Generalized sampling was first introduced by Adcock & Hansen in a series of papers (Adcock & Hansen
2011b, Adcock & Hansen 2012a, Adcock & Hansen 2012b). An extension to sampling and reconstructing in
different Hilbert spaces was considered in (Adcock & Hansen 2013), and in (Adcock, Hansen & Poon 2013a)
the questions of sharp bounds and optimality of the reconstruction were considered. The particular case of
GS for Fourier samples and wavelets was considered in (Adcock, Hansen & Poon 2013b). §2 is based mainly
on these papers. The extension of GS to inverse and ill-posed problems was presented in (Adcock, Hansen,
Herrholz & Teschke 2013c). In §3 of this paper we improve the estimates given in (Adcock et al. 2013c) by
using the geometric approach of (Adcock et al. 2013a).

In (Adcock & Hansen 2011a) a first theory of infinite-dimensional CS was presented, using ideas from
generalized sampling. This was further developed in (Adcock, Hansen, Poon & Roman 2013d) where the
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5% subsampling map Reconstruction Reconstruction
(1024x1024) (1024x1024) (crop 256x256)

Figure 1: CS reconstruction from Fourier samples using wavelets. The subsampling strategy is displayed in
the left column. Top: the uniform random subsampling strategy proposed by standard CS theory. Middle:
two-level subsampling scheme (full sampling in the centre, uniform random subsampling outside). Bottom:
Multi-level random subsampling strategy (see §4). The first scheme leads to poor reconstructions due to
the high coherence. The latter two strategies exploit the asymptotic incoherence and asymptotic sparsity to
obtain superior reconstructions.
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new principles asymptotic sparsity, asymptotic incoherence and multilevel random subsampling were intro-
duced. §4 of this paper is based mainly on these works.

2 Generalized sampling – stable recovery in arbitrary frames

2.1 The abstract reconstruction problem
Let us first formally define the reconstruction problem we shall consider in this section. Suppose that
{ψj}j∈N is a collection of elements of a separable Hilbert space H (over C) that forms a frame for a closed
subspace S of H (the sampling space). In other words, span{ψj}j∈N is dense in S and there exist constants
c1, c2 > 0 such that

c1‖f‖2 ≤
∑
j∈N
|〈f, ψj〉|2 ≤ c2‖f‖2, ∀f ∈ S, (2.1)

where 〈·, ·〉 and ‖·‖ are the inner product and norm on H respectively (Christensen 2003). We refer to c1 and
c2 as the frame constants for {ψj}j∈N. Let {ϕj}j∈N be a collection of reconstruction elements that form a
frame for a closed subspace T (the reconstruction space), with frame constants d1, d2 > 0:

d1‖f‖2 ≤
∑
j∈N
|〈f, ϕj〉|2 ≤ d2‖f‖2, ∀f ∈ T. (2.2)

Finally, let f ∈ H be a given element we wish to recover, and assume that we have access to the samples

f̂j = 〈f, ψj〉, j ∈ N. (2.3)

Note that the infinite vector f̂ = {f̂j}j∈N ∈ `2(N). Ignoring for the moment the issue of truncation – namely,
that in practice we only have access to the first N measurements – the abstract reconstruction problem can
now be stated as follows:

Problem 2.1 (Infinite-dimensional reconstruction problem). Given f̂ = {f̂j}j∈N, find a reconstruction f̃ of
f from the subspace T.

As mentioned in §1, an importance instance of this problem is when the measurements arise as Fourier
samples. In this case the sampling frame {ψj}j∈N is a frame of complex exponentials. Typically, the
reconstruction system {ϕj}j∈N is taken to be a wavelet frame or basis, although other choices, such as
orthogonal polynomials, may also be considered.

2.2 Stability and quasi-optimality

A reconstruction, in other words, a mapping F : f 7→ f̃ ∈ T based on the samples {f̂j}j∈N, ought to possess
two important properties. The first of these is so-called quasi-optimality:

Definition 2.2. Let F be an operator on H0, where H0 is a closed subspace of H, with range T. The
quasi-optimality constant of µ = µ(F ) > 0 is the least number such that

‖f − F (f)‖ ≤ µ‖f − PTf‖, ∀f ∈ H0,

where PT : H→ T is the orthogonal projection onto T. If no such constant exists, we write µ =∞. We say
that F is quasi-optimal if µ(F ) is small.

Since PTf is the best, i.e. energy-minimizing, approximation to f from the reconstruction space T,
quasi-optimality states that the error committed by f̃ is within a small and constant factor of that of the best
approximation. The need for quasi-optimality arises from the fact that typical images and signals are known
to be well represented in certain bases and frames, e.g. wavelets or, in the case of smooth signals or images,
polynomials (Unser 2000). In other words, the error ‖f −PTf‖ is small. It is therefore important that, when
reconstructing f in the corresponding subspace T from its measurements {f̂j}j∈N, the constant µ � ∞.
Otherwise, the beneficial property of T for the signal f may be lost when passing to the reconstruction f̃ .

The second important consideration is that of stability, which we quantify via the condition number:

5



Definition 2.3. Let H0 be a closed subspace of H and suppose that F : H0 → H is a mapping such that,
for each f ∈ H0, F (f) depends only on the vector of samples f̂ ∈ `2(N). The (absolute) condition number
κ = κ(F ) is given by

κ = sup
f∈H0

lim
ε→0+

sup
g∈H0

0<‖ĝ‖`2≤ε

{
‖F (f + g)− F (f)‖

‖ĝ‖`2

}
. (2.4)

We say that F is well-conditioned if κ is small. Otherwise it is ill-conditioned.

A well-conditioned mapping F is robust towards perturbations such as noise, and therefore this property
is vital from a practical perspective.

We note that the condition number (2.4) does not assume linearity of F . If this is the case, then one has
the much simpler form

κ(F ) = sup
f∈H0

f̂ 6=0

{
‖F (f)‖
‖f̂‖

}
.

We also remark that (2.4) is the absolute condition number, as opposed to the somewhat more standard
relative condition number (Trefethan & Bau III 1997). This is primarily for simplicity in the presentation:
under some assumptions, it is possible to adapt the results we prove later in this paper for the latter.

We are now in a position to introduce the notion of a reconstruction constant for a mapping F :

Definition 2.4. Let F be as in Definition 2.3, and let µ(F ) and κ(F ) be its quasi-optimality constant and
condition number respectively. The reconstruction constantC = C(F ) is defined byC(F ) = max {κ(F ), µ(F )}.
If F is not quasi-optimal or if κ(F ) is not defined, then we set C(F ) =∞.

2.3 The computational reconstruction problem

In practice we do not have access to the infinite vector of samples f̂ . Thus in this section we shall primarily
address the computation reconstruction problem: namely, the question of recovery of f from its first N
measurements f̂1, . . . , f̂N . Since we only have access to these samples, it is natural to consider finite-
dimensional subspaces of T. In particular, we shall let {TN}N∈N be a sequence of subspaces

TN ⊆ T, dim(TN ) <∞, ∀N ∈ N, (2.5)

satisfying
PTN → PT, N →∞, (2.6)

strongly on H. In other words, {TN}N∈N forms a sequence of finite-dimensional approximations to T.
Strictly, speaking, the second assumption is not necessary. However, it is natural so as to ensure a convergent
approximation. Note also that, since {ϕj}j∈N forms a frame T, one usually defines TN by

TN = span{ϕj}j∈IN , ∀N ∈ N, (2.7)

where the index sets I1 ⊆ I2 ⊆ . . . satisfy ∪N∈NIN = N.
We can now formulate the computational reconstruction problem:

Problem 2.5 (Computational reconstruction problem). Given the samples f̂1, . . . , f̂N , compute a recon-
struction to f from the subspace TN .

When considering methods, i.e. mappings FN , for this problem, it is desirable that the reconstruction
constants C(FN ) should not grow rapidly with N . If this is not the case, then increasing the number of mea-
surements could, for example, lead to a worse approximation and increased sensitivity to noise. Examples
of this are discussed in §2.7. To avoid this scenario, we now make the following definition:

Definition 2.6. For each N ∈ N, let FN be such that, for each f , FN (f) depends only on the samples
f̂ [N ] = {f̂1, . . . , f̂N}. We say that the reconstruction scheme {FN}N∈N is numerically stable and quasi-
optimal if

C∗ := sup
N∈N

C(FN ) <∞,

where C(FN ) is the reconstruction constant of FN . We refer to the constant C∗ as the reconstruction
constant of the reconstruction scheme {FN}N∈N.
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This definition incorporates the issue of stable approximation into a sequence of reconstruction schemes.
Although in practice one only has access to a finite number of samples, it is natural to consider the behaviour
of FN as N – the number of samples – increases. Ideally, we want FN (f) to converge to f at the same rate
as PTN f , so that the beneficial approximation properties of the subspaces {TN}N∈N, i.e. the convergence
of the projections PTN f , are not lost when passing to the reconstruction FN (f).

Later in this section we shall show that GS provides such a sequence of mapping FN . Moreover, it leads
to near-optimal reconstruction constants C∗. However, we first discuss another commonly used technique
for this problem; so-called consistent reconstructions.

2.4 Consistent reconstructions
Consistent reconstructions (or consistent sampling) were introduced by Unser & Aldroubi (Unser & Aldroubi
1994, Unser & Zerubia 1998) as a simple and intuitive solution to Problem 2.1 and 2.5. They were later
generalized significantly by Eldar et al. (Dvorkind & Eldar 2009, Eldar 2003a, Eldar 2003b, Eldar & Werther
2005).

Let us first consider Problem 2.1. The consistent reconstruction arises by solving the so-called consis-
tency conditions. Specifically, we let f̃ ∈ T (whenever it exists uniquely) be the solution of

〈f̃ , ψj〉 = 〈f, ψj〉, j = 1, 2, . . . , f̃ ∈ T. (2.8)

Note that consistency means that the samples of f̃ agree with those of f , which is intuitive from an engineer-
ing perspective since it stipulates that the reconstructed signal interpolates the available data. Correspond-
ingly, we say that f̃ is a consistent reconstruction of f , and refer to the corresponding operator F : f 7→ f̃ ,
whenever defined, as consistent sampling.

In §2.6 we shall recap the standard the consistent reconstruction (2.8). In particular, we show that it
possesses a near-optimal reconstruction constant, and therefore does indeed solve Problem 2.1.

Now consider the computational reconstruction problem, Problem 2.5. In this case, the corresponding
consistent reconstruction (Eldar 2003a, Eldar 2003b, Eldar & Dvorkind 2006, Hirabayashi & Unser 2007,
Unser 2000) is given as the solution of

〈f̃N,N , ψj〉 = 〈f, ψj〉, j = 1, . . . , N, f̃N,N ∈ TN , (2.9)

(the use of the double index in f̃N,N is for agreement with subsequent notation). Whilst this reconstruction
retains the same intuitive notion of interpolating the available data, in §2.7 we shall show that in general
the reconstruction FN,N , if it exists (which is not guaranteed), can possess an arbitrarily large constants
C(FN,N ). Hence consistent sampling when applied to Problem 2.5 can be both unstable and divergent.
Generalized sampling, which we introduce in §2.9, overcomes these problems and leads to a stable, quasi-
optimal reconstruction.

Before doing this, let us briefly note one property of consistent sampling. Namely, the reconstructions
given by (2.8) and (2.9) are perfect for the subspaces T and TN respectively. This means that F (f) = f
whenever f ∈ T for the former, and FN,N (f) = f whenever f ∈ TN in the case of the latter (provided
FN,N (f) exists uniquely).

2.5 Geometry of Hilbert spaces
In the next section we provide analysis of consistent sampling. For this, it is first useful to introduce some
standard geometry of Hilbert spaces.

Definition 2.7. Let U and V be closed subspaces of a Hilbert space H and letPV : H→ V be the orthogonal
projection onto V. The subspace angle θ = θUV ∈ [0, π2 ] between U and V is given by

cos(θUV) = inf
u∈U
‖u‖=1

‖PV u‖. (2.10)

Note that there are a number of different ways to define the angle between subspaces (Steinberg 2000,
Tang 1999). However, (2.10) is the most convenient for our purposes. We shall also make use of the following
equivalent expression for cos (θUV):

cos (θUV) = inf
u∈U
‖u‖=1

sup
v∈V
‖v‖=1

|〈u, v〉| . (2.11)
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Since we are interested in subspaces for which the cosine of the associated angle is nonzero, the following
lemma will prove useful:

Lemma 2.8. Let U and V be closed subspaces of a Hilbert space H. Then cos (θUV⊥) > 0 if and only if
U ∩V = {0} and U + V is closed H.

Proof. See (Tang 1999, Thm. 2.1).

We now make the following definition:

Definition 2.9. Let U and V be closed subspaces of a Hilbert space H. Then U and V satisfy the subspace
condition if cos (θUV⊥) > 0, or equivalently, if U ∩V = {0} and U + V is closed in H.

Subspaces U and V satisfying this condition give a decomposition U ⊕ V = H0 of a closed subspace
H0 of H. Equivalently, this ensures the existence of a projection of H0 with range U and kernel V. We refer
to such a projection as an oblique projection and denote it by PUV. Note that PUV will not, in general, be
defined over the whole of H. However, this is true whenever V = U⊥, for example, and in this case PUV

coincides with the orthogonal projection, which for succinctness we denote by PU.
We shall also require the following results on oblique projections (see (Buckholtz 1999, Szyld 2006)):

Theorem 2.10. Let U and V be closed subspaces of H with U⊕V = H. Then

‖PUV‖ = ‖I − PUV‖ = sec (θUV⊥) ,

where ‖·‖ is the standard norm on the space of bounded operators on H.

Corollary 2.11. Suppose that U and V are closed subspaces of H satisfying the subspace condition, and let
WUV : H0 → U be the oblique projection with range U and kernel V, where H0 = U⊕V. Then

‖PUVf‖ ≤ sec (θUV⊥) ‖f‖, ∀f ∈ H0, (2.12)

and if PU : H→ U is the orthogonal projection,

‖f − PUf‖ ≤ ‖f − PUVf‖ ≤ sec (θUV⊥) ‖f − PUf‖, ∀f ∈ H0. (2.13)

Moreover, the upper bounds in (2.12) and (2.13) are sharp.

Proof. The sharp bound (2.12) is due to Theorem 2.10. For (2.13) we first note that (I − PUV) = (I −
PUV)(I − PU), since PUV and PU are both projections onto U. Hence, by Theorem 2.10,

‖f − PUVf‖ = ‖(I − PUV)(I − PU)f‖ ≤ sec (θUV⊥) ‖f − PUf‖,

with sharp bound.

Remark 2.1 Although arbitrary subspaces U and V need not obey the subspace condition, this is often the
case in practice. For example, if U ⊆ V⊥ then cos (θUV⊥) = 1 by (2.11).

To complete this section, we present the following lemma which will be useful in what follows:

Lemma 2.12. Let U and V be closed subspaces of H satisfying the subspace condition. Suppose also that
dim(U) = dim(V⊥) = n <∞. Then U⊕V = H.

Proof. Note that U⊕ V = H if and only if cos (θUV⊥) and cos (θV⊥U) are both positive (Tang 1999, Thm.
2.3). Since cos (θUV⊥) > 0 by assumption, it remains to show that cos (θV⊥U) > 0. Consider the mapping
PV⊥

∣∣
U

: U → V⊥. We claim that this mapping is invertible. Since U and V⊥ have the same dimension it
suffices to show that PV⊥

∣∣
U

has trivial kernel. However, the existence of a nonzero u ∈ U with PV⊥u = 0
implies that cos (θUV⊥) = 0; a contradiction. Thus PV⊥

∣∣
U

is invertible, and in particular, it has range V⊥.
Now consider cos (θV⊥U). By (2.11) and this result,

cos (θV⊥U) = inf
w∈V⊥

w 6=0

sup
u∈U
u 6=0

|〈w, u〉|
‖w‖‖u‖

= inf
u′∈U
u′ 6=0

sup
u∈U
u6=0

|〈PV⊥u
′, u〉|

‖PV⊥u′‖‖u‖
≥ inf
u′∈U
u′ 6=0

‖PV⊥u
′‖

‖u′‖
= cos (θUV⊥) > 0.

This completes the proof.

8



The following lemma will also be useful:

Lemma 2.13. Let U and V be closed subspaces of H satisfying the subspace condition. Let f ∈ H0 := U⊕V
and consider the following variational problem:

find f̃ ∈ U satisfying 〈f̃ , w〉 = 〈f, w〉, ∀w ∈ V⊥. (2.14)

Then this problem has a unique solution f̃ and it coincides with PUVf .

Proof. Since U and V satisfy the subspace condition, PUV exists uniquely. Note that PUVf is a solution
of the variational problem. Hence it remains to show that the variational problem has a unique solution.
Suppose not. Then there exists a nonzero f̃ ∈ U with 〈f̃ , w〉 = 0, ∀w ∈ V⊥. Hence f̃ ∈ U ∩ V, which
contradicts the fact that U and V satisfy the subspace condition.

2.6 The reconstruction constant of consistent sampling
We now analyze the reconstruction constant of consistent sampling for Problems 2.1 and 2.5. The usual
approach (Unser & Aldroubi 1994, Eldar & Werther 2005) for doing this is based on associating the corre-
sponding mappings with appropriate oblique projections, and then applying the results given in the previous
section.

2.6.1 The case of Problem 2.1

Our main results are as follows:

Theorem 2.14. Suppose that T and S⊥ satisfy the subspace condition. If f ∈ H0 := T ⊕ S⊥, then there
exists a unique f̃ ∈ T satisfying (2.8). In particular, the consistent reconstruction F : H0 → T, f 7→ f̃ is
well-defined. Moreover, it coincides with the oblique projection PTS⊥ with range T and kernel S⊥.

Proof. By linearity, (2.8) is equivalent to (2.14) with U = T and V = S⊥. Since T and S⊥ satisfy the
subspace condition, Lemma 2.13 demonstrates that the consistent reconstruction F is well-defined on H0

and coincides with the oblique projection PTS⊥ .

Corollary 2.15. Suppose that T and S⊥ satisfy the subspace condition and let F : H0 := T ⊕ S⊥ → T,
f 7→ f̃ be the consistent reconstruction (2.8). Then the quasi-optimality constant and condition number
satisfy

µ(F ) = sec (θTS) ,
sec (θTS)
√
c2

≤ κ(F ) ≤ sec (θTS)
√
c1

,

and therefore
sec (θTS) max{1, 1/

√
c2} ≤ C(F ) ≤ sec (θTS) max{1, 1/

√
c1}.

To prove this corollary, it is necessary to first recall several basic facts about frames (Christensen 2003).
Given the sampling frame {ψj}j∈N for the subspace S, we define the synthesis operator S : `2(N)→ H by

Sα =
∑
j∈N

αjψj , α = {αj}j∈N ∈ `2(N).

Its adjoint, the analysis operator, is defined by

S∗f = f̂ = {〈f, ψj〉}j∈N, f ∈ H.

The resulting composition S = SS∗ : H→ H, given by

Sf =
∑
j∈N
〈f, ψj〉ψj , ∀f ∈ H, (2.15)

is well-defined, linear, self-adjoint and bounded. Moreover, the restriction S|S : S → S is positive and
invertible with c1I|S ≤ S|S ≤ c2I|S, where c1, c2 are the frame constants appearing in (2.1).

We now require the following lemma:
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Lemma 2.16. Suppose that T and S⊥ satisfy the subspace condition, and let S be given by (2.15). Then

c1 cos2(θTS) I|T ≤ S|T ≤ c2I|T. (2.16)

Proof. Let f ∈ H be arbitrary, and write f = PSf + PS⊥f . Then

〈Sf, f〉 =
∑
j∈N
|〈f, ψj〉|2 =

∑
j∈N
|〈PSf, ψj〉|2 = 〈SPSf,PSf〉. (2.17)

Suppose now that ϕ ∈ T. Using (2.17) and the frame condition (2.1) we find that

c1‖PSϕ‖2 ≤ 〈Sϕ,ϕ〉 ≤ c2‖PSϕ‖2 ≤ c2‖ϕ‖2.
To obtain (2.16) we now use the definition of the subspace angle θTS.

Proof of Corollary 2.15. Since f̃ coincides with the oblique projection (Theorem 2.14), an application of
Corollary (2.11) gives that

‖f − F (f)‖ ≤ sec (θTS) ‖f − PTf‖, ∀f ∈ H0,

and since this bound is sharp, we deduce that µ(F ) = sec (θTS).
It remains to estimate κ(F ). Let f ∈ H0 be arbitrary and consider f̃ = F (f) ∈ T. We have

‖f̂‖2`2 =
∑
j∈N
|〈f, ψj〉|2 =

∑
j∈N
|〈f̃ , ψj〉|2 = 〈S f̃ , f̃〉.

Hence, by the previous lemma, ‖f̂‖2`2 ≥ c1 cos2(θTS)‖f̃‖2. Since F is linear, this now gives

κ(F ) = sup
f∈H0

f̂ 6=0

{
‖F (f)‖
‖f̂‖`2

}
≤ sec(θTS)

√
c1

.

On the other hand, since the reconstruction F is perfect for the subspace T, and since f̂ = 0 if and only if
f = 0 for f ∈ T,

κ(F ) ≥ sup
f∈T

f̂ 6=0

{
‖f‖
‖f̂‖`2

}
= sup
f∈T
f 6=0

{
‖f‖
‖f̂‖`2

}
.

By (2.17), we have ‖f̂‖2`2 ≤ c2‖PSf‖2. Hence

κ(F ) ≥ 1
√
c2

sup
f∈T
f 6=0

{
‖f‖
‖PSf‖

}
=

sec(θTS)
√
c2

,

as required.

2.6.2 The case of Problem 2.5

We now consider the computational reconstruction problem (Problem 2.5).

Theorem 2.17. Let SN = span{ψ1, . . . , ψN} and suppose that

cos (θN,N ) > 0, (2.18)

where θN,N = θTNSN . Then, for each f ∈ HN := TN ⊕ S⊥N there exists a unique f̃N,N ∈ TN satisfying
(2.9). In particular, the consistent reconstruction FN,N : HN → TN , f 7→ f̃N,N is well-defined and
coincides with the oblique projection PTNS⊥N

with range TN and kernel S⊥N .

Proof. This follows immediately from Lemma 2.13 with U = TN and V = S⊥N .

Corollary 2.18. Let θN,N , HN and FN,N be as in Theorem 2.17. Then the quasi-optimality constant and
condition number satisfy

µ(FN,N ) = sec (θN,N ) , κ(FN,N ) ≥ sec (θN,N )
√
c2

,

and therefore
C(FN,N ) ≥ max {1, 1/

√
c2} sec (θN,N ) .

Proof. This follows immediately from Lemma 2.19 and Corollary 2.23.
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2.7 Failure of consistent sampling for Problem 2.5
Theorem 2.14 shows that consistent sampling provides a stable, quasi-optimal solution to Problem 2.1, pro-
vided cos (θTS) 6= 0, or in other words, whenever the spaces T and S are not perpendicular. According to
Theorem 2.17, the same conclusion holds for Problem 2.5 if the subspace angles θN,N are bounded away
from π/2. Unfortunately, there is no general guarantee that this will be the case. Moreover, as the following
examples illustrate, it is typical for the quantities cos(θN,N ) to behave wildly:

Example 2.1 Let H = L2(−1, 1) and consider the orthonormal Fourier sampling basis:

ψj(x) =
1√
2

eijπx, j ∈ Z.

Let SN = span{ψj : j = −(N − 1)/2, . . . , (N − 1)/2} (we shall assume that N is odd for convenience),
and consider the reconstruction space TN = PN−1 of polynomials of degree less than N . Note that if
{ϕj}j∈N is the orthonormal basis of Legendre polynomials for H, then TN takes the form (2.7) with index
set IN = {1, . . . , N}, i.e. TN = span{ϕ1, . . . , ϕN}.

In (Adcock, Hansen & Shadrin 2012) it was proved that

cos(θN,N ) ≤ c−N , ∀N,

for some constant c > 1, and therefore the reconstruction constant C(FN,N ) ≥ cN grows exponentially fast
in N . This translates into both extreme instability and divergence of the reconstruction.

Example 2.2 Let H = L2(−1, 1) and let ψj and SN be as in the previous example. Let {ϕj}j∈N be the
orthonormal basis of Haar wavelets on [0, 1], and set TN = span {ϕ1, . . . , ϕN}, i.e. the finite-dimensional
subspace spanned by the first N Haar wavelets. In (Adcock et al. 2013b) it was proved that, much as in the
previous example, cos(θN,N ) is exponentially small in N . Hence the same conclusions – namely, instability
and divergence of the consistent reconstruction – hold.

Note that this phenomenon is not isolated to Haar wavelets. One sees exactly the same type of behaviour
for essentially all orthonormal bases of compactly supported wavelets. See (Adcock et al. 2013b).

As a particular consequence, these examples illustrate that boundedness of the infinite subspace angle
θTS away from π/2 does not guarantee the same for the finite subspace angles θN,N . Or equivalently, the
spaces TN and SN can be near-perpendicular, even when T and S are not.

2.8 Linear systems and connections to finite sections of operators
It is interesting to reinterpret this failure of consistent reconstruction in terms of spectral properties of trun-
cations of operators. This will be particularly useful in §3.

Let f̂ = {f̂j}j∈N be the infinite vector of samples of f , and define the infinite matrix

A =

 〈ϕ1, ψ1〉 〈ϕ2, ψ1〉 · · ·
〈ϕ1, ψ2〉 〈ϕ2, ψ2〉 · · ·

...
...

. . .

 , (2.19)

Since both the sampling and reconstruction systems are frames, the matrix A can be viewed as a bounded
operator on `2(N). Moreover, if S and T are the synthesis operators for {ψj}∞j=1 and {ϕj}∞j=1 respectively,
then we may express A as the product S∗T . It is readily seen that if the infinite-dimensional consistent
reconstruction f̃ is expressed as

f̃ = Tβ =
∑
j∈N

βjϕj ,

for some β = {βj}j∈N ∈ `2(N), then β satisfies the infinite linear system

Aβ = f̂ . (2.20)

Now consider the computational consistent reconstruction (2.9), and suppose that, as in the previous exam-
ples, we let

TN = span{ϕ1, . . . , ϕN}.
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If {ej}j∈N is the canonical basis for `2(N), let

PN : `2(N)→ span{e1, . . . , en},

be the orthogonal projection. If we now write the consistent reconstruction (2.9) as

f̃N,N = TNβ
[N,N ] =

N∑
j=1

β
[N,N ]
j ϕj ,

then the vector β[N,N ] ∈ PN (`2(N)) satisfies

A[N,N ]β[N,N ] = PN f̂ , A[N,N ] = PNAPN . (2.21)

Note that this is just an N ×N linear system for the vector β[N,N ]. Note also that A[N,N ] = S∗NTN , where
SN and TN are the synthesis operators for the finite frame sequences {ψ1, . . . , ψN} and {ϕ1, . . . , ϕN}
respectively, and therefore one may write

f̃N,N = TNβ
[N,N ] = TN (S∗NTN )−1S∗Nf, (2.22)

whenever A[N,N ] is invertible.
This leads to an alternative viewpoint of the computational consistent reconstruction. In particular, we

may consider (2.21) as a discretization of the infinite linear system (2.20). Moreover, since PNAPN is the
leading N ×N submatrix of A, the discretization (2.21) is nothing more than an instance of the well-known
finite section method for solving infinite linear systems applied to (2.20).

Suppose now for simplicity that both {ψj}j∈N and {ϕj}j∈N are orthonormal bases. Then one can show
that cos(θN,N ) and cos(θ) coincide with the minimal singular values of the matrices A[N,N ] and A respec-
tively (the latter quantity being precisely 1 sinceA is an isometry in this case). Hence, the fact that θN,N may
behave wildly, even when θ is bounded away from π/2, demonstrates that the spectra of the finite sections
A[N,N ] poorly approximate the spectrum of A.

This question – namely, how well does a sequence of finite-rank operators approximate the spectrum of
a given infinite-rank operator – is one of the most fundamental in the field of spectral theory. Within this
field, finite sections have been studied extensively over the last several decades (Böttcher 1996, Hansen 2008,
Lindner 2006). Unfortunately there is no guarantee that they be well behaved.

To put this in a formal perspective, suppose for the moment that we approximate the operator A with
a sequence A[N ] of finite-rank operators (which may or may not be finite sections), and instead of solving
Aβ = f̂ , we solve A[N ]β[N ] = f̂ [N ]. For obvious reasons, it is vitally important that this sequence satisfies
the three following conditions:

(i) Invertibility: A[N ] is invertible for all n = 1, 2, . . ..
(ii) Stability: ‖(A[N ])−1‖ is uniformly bounded for all N = 1, 2, . . ..

(iii) Convergence: the solutions β[N ] → β as N →∞.

Unfortunately, there is no guarantee that finite sections, and therefore the consistent reconstruction technique,
possess any of these properties. In fact, one requires rather restrictive conditions on A, such as positive self-
adjointness, for this to be the case. Typically operators of the form (2.19) are not self-adjoint, thereby making
finite sections unsuitable in general for discretizing the system Aβ = f̂ .

Fortunately, these issues can be overcome by performing an alternative discretization of A. This leads
to a sequence of operators that possess the properties (i)–(iii) above, and culminates in the GS technique.
The key to doing this is to allow the number of samples N and the number of index M of the reconstruction
subspace TM to differ. When N is sufficiently large for a given M , or equivalently, M is sufficiently small
for a given N , we obtain a finite-dimensional operator A[N,M ] (which now depends on both N and M ) that
inherits the spectral structure of its infinite-dimensional counterpart A. This ensures a stable, quasi-optimal
reconstruction.

2.9 Generalized sampling
From now on, we shall assume that the subspaces T and S⊥ satisfy the subspace condition.
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We now introduce generalized sampling. Let SN = span{ψ1, . . . , ψN} and suppose that {TM}M∈N is
a sequence of subspaces obeying (2.5) and (2.6). We seek a reconstruction f̃N,M ∈ TM of f from the N
samples f̂1, . . . , f̂N . Let SN : H→ SN be the finite rank operator given by

SNg = SNS
∗
Ng =

N∑
j=1

〈g, ψj〉ψj .

Note that the sequence of operators SN converge strongly to S on H as N →∞, where S is given by (2.15),
since {ψj}j∈N is a frame (Christensen 2003). With this to hand, the approach originally proposed in (Adcock
& Hansen 2012a) is to define f̃N,M ∈ TM as the solution of the equations

〈SN f̃N,M , ϕj〉 = 〈SNf, ϕj〉, j = 1, . . . ,M, f̃N,M ∈ TM . (2.23)

We refer to the mapping FN,M : f 7→ f̃N,M , whenever defined, as generalized sampling (GS). Observe
that SMf is determined solely by the samples f̂1, . . . f̂M . Hence FN,M (f) is also determined only by these
values.

In what follows it will be useful to note that (2.23) is equivalent to

〈f̃N,M ,SNϕj〉 = 〈f,SNϕj〉, j = 1, . . . ,M, f̃N,M ∈ TM , (2.24)

due to the self-adjointness of SN . An immediate consequence of this formulation is the following:

Lemma 2.19. Suppose that cos(θN,N ) > 0 and that dim(SN ) = dim(TN ). Then when M = N the GS
reconstruction f̃N,M of f ∈ H defined by (2.23) is precisely the consistent reconstruction f̃N,N defined by
(2.9).

Proof. We first claim that SN is a bijection from TN to SN . Suppose that SNϕ = 0 for some ϕ ∈ TN .
Then 0 = 〈SNϕ,ϕ〉 =

∑N
j=1 |〈ϕ,ψj〉|2 and therefore ϕ ∈ S⊥N . Since ϕ ∈ TN , and TN ∩ S⊥N = {0} by

assumption, we have ϕ = 0, as required.
By linearity, we now find that the conditions (2.24) are equivalent to (2.9). Since the consistent recon-

struction f̃n,n satisfying (2.8) exists uniquely (Theorem 2.17), we obtain the result.

We conclude that GS contains consistent sampling as a special case corresponding to M = N , which
explains our use of the same notation for both. However, as mentioned above, the key to GS is to allow N
and M to vary independently. As we prove in §2.11, doing so leads to a small reconstruction constant.

2.10 Generalized sampling and uneven sections of operators
Before this, let us first connect GS to the linear systems interpretation of §2.8. Let

f̃N,M = TNβ
[N,M ] =

M∑
j=1

β
[N,M ]
j ϕj ,

for some vector β[N,M ] ∈ PM (`2(N)). Then it is readily seen that (2.23) is equivalent to the linear system

(A[N,M ])∗A[N,M ]β[N,M ] = (A[N,M ])∗PN f̂ , A[N,M ] = PNAPM . (2.25)

The matrix A[N,M ] is the leading N ×M submatrix of the infinite matrix A, and is commonly referred to
as an uneven section of A. Uneven sections have recently gained prominence as effective alternatives to the
finite section method for discretizing non-self adjoint operators (Gröchenig, Rzeszotnik & Strohmer 2011,
Heinemeyer, Lindner & Potthast 2008). In particular, in (Hansen 2011) they were employed to solve the
long-standing computational spectral problem. Their success is due to the observation that, under a number
of assumptions (which are always guaranteed for the problem we consider in this paper), we have

(A[N,M ])∗A[N,M ] = PMA
∗PNAPM → PMA

∗APM , N →∞,

where PMA∗APM is the M ×M finite section of the self-adjoint matrix A∗A. This guarantees properties
(i)–(iii) listed in §2.8 for A[N,M ], whenever N is sufficiently large in comparison to M . In other words,
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whereas the finite section PMAPM can possess wildly different spectral properties those of A, the uneven
section PNAPM is guaranteed to inherit those properties whenever N is sufficiently large.

Note that finite (and uneven) sections have been extensively studied (Böttcher 1996, Hansen 2008,
Lindner 2006), and there exists a well-developed theory of their properties involving C∗-algebras (Hagen,
Roch & Silbermann 2001). However, these general results say little about the rate of convergence asN →∞,
nor do they provide explicit constants. Yet, as we shall see next, the operator A in this case is so structured
that its uneven sections admit both explicit constants and estimates for the rate of convergence. Moreover, of
great practical importance, such constants can also be numerically computed (see §2.12).

This aside, let us briefly not that the GS reconstruction, much as with the consistent reconstruction (2.22),
can be reformulated in terms of synthesis and analysis operators. Indeed, the matrix A[N,M ] is equivalent to
S∗NTM , and therefore

f̃N,M = TM (TMSNS∗NTM )−1T ∗MSNS
∗
Nf. (2.26)

This formulation will be of use in §3.

2.11 Analysis of generalized sampling
Let us first define the subspace angle

θN,M := θTM ,SN (TM ), N,M ∈ N. (2.27)

Before stating our main results, we first require the following lemma:

Lemma 2.20. Let θN,M be given by (2.27). Then

lim
N→∞

θN,M = θ∞,M ,

where θ∞,M = θTM ,S(TM ). In particular,

1 ≤ lim
N→∞

sec (θN,M ) ≤
√
c2
c1

sec (θTS) .

Proof. See (Adcock et al. 2013a, Lem. 4.4).

This lemma illustrates that the subspace angle θN,M is well-behaved whenever N is sufficiently large in
comparison to M . Unlike the consistent reconstruction, which is based on the poorly-behaved angle θN,N ,
this ensures stability and quasi-optimality of GS. We have:

Theorem 2.21. Let M ∈ N and suppose that N ≥ N0, where N0 is the least N such that cos (θN,M ) > 0.
Then, for each f ∈ H, there exists a unique f̃N,M ∈ TM satisfying (2.23). Moreover, the mapping FN,M :
f 7→ f̃N,M is precisely the oblique projection PTM ,(SN (TM ))⊥ with range TM and kernel (SN (TM ))⊥.

Proof. See (Adcock et al. 2013a, Thm. 4.5).

We now wish to estimate the reconstruction constant C(FN,M ) of generalized sampling. For this, we
first introduce the following quantity:

DN,M =

 inf
ϕ∈TM
‖ϕ‖=1

〈SNϕ,ϕ〉

− 1
2

, N,M ∈ N. (2.28)

Note that DN,M need not be defined for all N,M ∈ N. However, we will show subsequently that this is the
case provided N is sufficiently large in relation to M . We shall also let

D∞,M =

 inf
ϕ∈TM
‖ϕ‖=1

〈Sϕ,ϕ〉

− 1
2

, M ∈ N.

We now have the following lemma:
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Lemma 2.22. For fixed M ∈ N, DN,M → D∞,M as N →∞. In particular,

1
√
c2
≤ lim
N→∞

DN,M ≤
sec (θTS)
√
c1

.

Proof. The first result follows from strong convergence of the operators SN → S on H and the fact that TM
is finite-dimensional. The second result is due to Lemma 2.16.

Corollary 2.23. Let M ∈ N and N ≥ N0, where N0 is the least N such that cos(θN,M ) > 0 and DN,M <
∞. Let FN,M be the GS reconstruction. Then

µ(FN,M ) = sec (θN,M ) , κ(FN,M ) = DN,M , (2.29)

and therefore
DN,M ≤ C(FN,M ) ≤ max {1,

√
c2}DN,M . (2.30)

In particular, for fixed M ,

1 ≤ lim
N→∞

µ(FN,M ) ≤
√
c2
c1

sec (θTS) ,
1
√
c2
≤ lim
N→∞

κ(FN,M ) ≤ sec (θTS)
√
c1

, (2.31)

and

max
{

1,
1
√
c2

}
≤ lim
N→∞

C(FN,M ) ≤
max

{
1,
√
c2
}

√
c1

sec (θTS) . (2.32)

Proof. See (Adcock et al. 2013a, Cor. 4.7).

This corollary demonstrates that by fixing M and making N sufficiently large (or equivalently, fixing
N and making M sufficiently small), we are guaranteed a stable, quasi-optimal reconstruction. To further
illustrate this, one can also consider behaviour of f̃N,M as N → ∞. As shown in (Adcock et al. 2013a),
f̃N,M → f̃∞,M as N →∞, where f̃∞,M is the solution to

〈S f̃∞,M , ϕj〉 = 〈Sf, ϕj〉, j = 1, . . . ,M, f̃∞,M ∈ TM .

Much as above, one can analyze this reconstruction to show that the mapping F∞,M : f 7→ f̃∞,M is
stable and quasi-optimal with constants µ(F∞,M ) = sec (θ∞,M ) and κ(F∞,M ) = D∞,M , i.e. the limits as
N →∞ of the corresponding quantities for FN,M .

Remark 2.2 Note that the GS reconstruction f̃N,M is no longer consistent with the measurements f̂1, . . . , f̂N
whenever M < N . In some applications, it may be important to have such an interpolation property. Since
setting M = N is unstable (this corresponds to the consistent reconstruction discussed previously), an alter-
native is to allow M > N . The problem is now underdetermined – the reconstruction space has typically a
larger dimension than the number of samples – therefore one usually combines this with some sort of regu-
larization. Unfortunately `2 regularization destroys the good accuracy of the reconstruction space. However,
one can restore such accuracy by using `1 regularization instead. In this way, one obtains a stable and
consistent version of generalized sampling. See (Poon 2013) for details.

2.12 The stable sampling and reconstruction rates
The main issue with GS is to determine how large the parameter N must be in comparison to M , or equiv-
alently, how small M must be in comparison to N , so as to ensure a stable, quasi-optimal reconstruction.
This is quantified as follows:

Definition 2.24. For θ ∈
(

max{1,√c2}√
c1

sec(θTS),∞
)

, the stable sampling rate is given by

Θ(M ; θ) = min {N ∈ N : C(FN,M ) ≤ θ} , M ∈ N. (2.33)

The stable reconstruction rate is given by

Ψ(N ; θ) = max{M ∈ N : C(FN,M ) ≤ θ}, N ∈ N. (2.34)
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The stable sampling rate measures how large N must be for a fixed M to ensure guaranteed, stable and
quasi-optimal recovery. Conversely, the stable reconstruction rate measures how large M can be for a fixed
number of measurements N . Note that, by choosing either N ≥ Θ(M ; θ) or m ≤ Ψ(N ; θ), we guarantee
that the reconstruction f̃N,M is numerically stable and quasi-optimal, up to the magnitude of θ. Moreover,
the condition N ≥ Θ(M ; θ) (or M ≤ Ψ(N ; θ)) is both sufficient and necessary to ensure stable, quasi-
optimal reconstruction: if one were to sample at a rate below Θ(M ; θ) (or above Ψ(N ; θ)) then one would
witness worse stability and convergence of the reconstruction.

A key property of the stable sampling and reconstruction rates is that they can be computed:

Lemma 2.25. Let θN,M andDN,M be as in (2.27) and (2.28) respectively. Then the quantities 1/D2
N,M and

cos2(θN,M ) are the minimal generalized eigenvalues of the matrix pencils
{

(A[N,M ])∗A[N,M ], G[M ]
}

and
{B[N,M ], G[M ]} respectively, where G[M ] is the Gram matrix for {ϕj}Mj=1, A[N,M ] is as in (2.25), B[N,M ]

is given by

B[N,M ] = (A[N,M ])∗A[N,M ]
(

(A[N,M ])∗C [M ]A[N,M ]
)−1

(A[N,M ])∗A[N,M ],

and C [N ] is the Gram matrix for {ψj}Nj=1. In particular, if {ϕj}Mj=1 is an orthonormal basis for TM ,

DN,M =
1

σmin(A[N,M ])
, sec(θN,M ) =

1√
λmin(B[N,M ])

,

where σmin(A[N,M ]) and λmin(B[N,M ]) denote the minimal singular value and eigenvalue of the matrices
A[N,M ] and B[N,M ] respectively.

Proof. See (Adcock & Hansen 2012b, Lem. 2.13).

Although this lemma allows one to computeC(FN,M ) (recall thatC(FN,M ) = max{sec(θN,M ), DN,M}
as a result of Corollary 2.23), and therefore Θ(N ; θ) and Ψ(M ; θ), it is somewhat inconvenient to have
to compute both DN,M and sec(θN,M ). The latter, in particular, can be computationally intensive since
it involves both forming and inverting the matrix (A[N,M ])∗C [M ]A[N,M ]. However, recalling the bound
C(FN,M ) ≤ max{1,√c2}DN,M , we see that stability and quasi-optimality can be ensured, up to the magni-
tude of c2, by controlling the behaviour of DN,M only. This motivates the computationally more convenient
alternative

Θ̃(M ; θ) = min {N ∈ N : DN,M ≤ θ} , M ∈ N, θ ∈
(

1
√
c1

sec(θTS),∞
)
,

and likewise Ψ̃(N ; θ). Note that setting N ≥ Θ̃(M ; θ) or M ≤ Ψ̃(N ; θ) ensures a condition number of at
worst θ and a quasi-optimality constant of at most max{1,√c2}θ.

Although it is possible to compute such quantities, it is important to have analytical estimates for the
stable sampling and reconstruction rates for common examples of sampling and reconstruction systems.
Numerous such results have been established (Adcock & Hansen 2013, Adcock et al. 2013b, Adcock &
Hansen 2012b, Adcock et al. 2013a), and we shall recap several of these in §2.14.

Remark 2.3 As shown in (Adcock et al. 2013a), GS is in some important senses optimal for the problem of
reconstructing in subspaces finite-dimensional subspaces from measurements given with respect to a frame.
In particular, the stable sampling rate cannot be circumvent by any so-called perfect method, and in the case
where the stable sampling rate is linear, it is only possible to outperform GS in terms of convergence in N
by a constant factor

2.13 Computational issues
To compute the GS reconstruction f̃N,M , we are required to solve the linear system (2.25). Note that this is
equivalent to the least squares problem

β[N,M ] = argmin
β∈PM (`2(N))

‖A[N,M ]β − PN f̂‖`2 ≡ argmin
β∈PM (`2(N))

‖S∗NTMβ − S∗Nf‖`2 , (2.35)

which can be solved by standard iterative algorithms such as conjugate gradients. The computational com-
plexity of computing the GS reconstruction is therefore determined by two factors. First, the number of
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conjugate gradient iterations required, and second, the computational cost of performing matrix vector mul-
tiplications with A[N,M ] and its adjoint (A[N,M ])∗. The first issue is easily tackled, as we see below. The
second, as we also discuss, depends on the sampling and reconstruction systems {ψj}j∈N and {ϕj}j∈N.

The number of iterations required in the conjugate gradient algorithm is proportional to the condition
number κ(A[N,M ]), for which we have the following:

Lemma 2.26. Let G[M ] ∈ CM×M be the Gram matrix for {ϕ1, . . . , ϕM}. Then the condition number of the
matrix A[N,M ] satisfies

1
√
c2DN,M

√
κ
(
G[M ]

)
≤ κ(A[N,M ]) ≤

√
c2DN,M

√
κ
(
G[M ]

)
.

Proof. See (Adcock & Hansen 2012b, Lem. 2.11).

This lemma shows that the condition number of the matrix A[N,M ] is no worse than that of the Gram
matrixG[M ] wheneverN is chosen according to the stable sampling rate. In particular, if the vectors {ϕj}j∈N
forms a Riesz or orthonormal basis, then κ(G[M ]) = O (1) as M → ∞, and hence the condition number
of A[N,M ] is also O (1). Thus, in this case, the complexity of computing f̃N,M is proportional to the cost of
performing matrix-vector multiplications.

In general, since A[N,M ] is N ×M , such multiplications will require O (MN) operations. This figure
may be intolerably high for some applications, and therefore it is desirable to have fast algorithms. Any
such algorithm naturally depends on the particular structure of A. However, in the important case of Fourier
sampling with wavelets as the reconstruction basis, one can use a combination of fast Fourier and fast wavelet
transforms to reduce this figure to O (N logN).

2.14 The effectiveness of generalized sampling
So far we have discussed the abstract framework of GS that allows for reconstruction in arbitrary frames. We
now demonstrate how this can be used with great effect on specific sampling and reconstruction problems,
such as those encountered in Examples 2.1 and 2.2. As mentioned in Section 1.1, given

g = Ff, f ∈ L2(Rd), supp(f) ⊆ [0, 1]d,

reconstructing f from pointwise samples of g is a highly important task in applications, and this will serve
as our test problem. If the samples are on a uniform grid and sampled according to the Nyquist sampling
rate, then the samples become the Fourier coefficients of f .

Note that given the firstN Fourier coefficient of f , we could form the partial Fourier series approximation

f ≈
N∑
j=1

f̂jψj . (2.36)

However, this converges very slowly in the L2-norm, specifically,

‖f −
N∑
j=1

f̂jψj‖ = O
(
N−1/2

)
, N →∞,

and suffers from the unpleasant Gibbs phenomenon. Fortunately, GS allows us to consider other subspaces
in which to recover f , and gives a stable and quasi-optimal algorithm for doing so.

2.14.1 Fourier samples and wavelet reconstruction

Let
T = S = L2(0, 1), SN = span{ψ1, . . . , ψN}, TM = span{ϕ1, . . . , ϕM},

where the ψjs are orthonormal complex exponentials spanning L2(0, 1) and the ϕjs are Daubechies wavelets
(modified at the boundaries to preserve the vanishing moments) (Cohen, Daubechies & Vial 1993). The
advantage of this choice of reconstruction space can be seen by noting that, if f ∈Ws(0, 1), where Ws(0, 1)
denotes the usual Sobolev space, then

‖f − PTN f‖ = O(N−s), N →∞,
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Figure 2: Reconstruction of the function f1(x, y) = cos(9x) cos(9y). The second row shows an 8 times
zoomed-in version of the upper left corner. Left: original function. Middle: truncated Fourier series with
2562 Fourier coefficients. Right: GS with DB3 wavelets computed from the same Fourier coefficients.

given that the Daubechies wavelet has sufficiently many vanishing moments. Thus, by using this as the re-
construction space in GS, we are able to obtain a much better approximation to f than the slowly-convergent
Fourier series (2.36), provided the stable sampling rate is not too severe. Fortunately, this is not the case:

Theorem 2.27 ((Adcock et al. 2013b)). Let TM be the reconstruction space consisting of the first M
Daubechies wavelet with q vanishing moments on the unit interval and let SN be the Fourier sampling
space as above. Then, for any fixed θ ∈ (1,∞), the stable sampling rate Θ(M, θ) is linear in M . Further-
more, given any f ∈Ws(0, 1) with s ∈ (0, q), the GS approximation f̃N,M implemented with N = Θ(M, θ)
samples satisfies

‖f − f̃N,M‖ = O(M−s).

This theorem means that GS will have a substantial advantage over classical Fourier series approxi-
mations when reconstructing smooth and non-periodic functions. Moreover, recall that the computational
complexity of implementing GS in this instance is equivalent to that of the FFT. Hence, one can compute a
substantially better approximation to f at little additional expense.

Example 2.3 To illustrate the effectiveness of GS using boundary wavelets, note that by Theorem 2.27
it follows that ‖f − f̃N,M‖ = O(N−s), when M = Ψ(N, θ) (the stable reconstruction rate) given suf-
ficiently many vanishing moments. This is substantially better than the slow convergence of the trun-
cated Fourier series when the function is non-periodic. To visualize this we have chosen two functions
f1(x, y) = cos(9x) cos(9y) and f2(x, y) = xy. In Figure 2 and Figure 3 we compare the reconstructions
via the truncated Fourier series and GS. Note that, as expected from the theory, GS dramatically outperforms
the truncated Fourier series given the same samples.

2.14.2 Fourier samples and polynomial reconstruction

Suppose now we consider the same setup, but we replace the wavelet reconstruction space with the subspace
TM = span{ϕ1, . . . , ϕM}, where {ϕj}j∈N is the orthonormal basis of Legendre polynomials on L2(0, 1).
This space is particularly well suited for smooth and nonperiodic functions. Indeed, suppose that f is analytic
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Figure 3: Reconstruction of the function f2(x, y) = xy. Upper left: truncated Fourier series with 5122

Fourier coefficients. Middle left: 8 times zoomed-in version of the upper figure. Lower left: error committed
by the truncated Fourier series. Upper right: GS with DB3 wavelets computed from the same 5122 Fourier
coefficients. Middle right: 8 times zoomed-in version of the upper figure. Lower right: error committed by
GS.
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Figure 4: Errors from reconstructions of the function f(t) = t5e−t from 101 Fourier coefficients. Left:
truncated Fourier series. Right: GS.

in the complex Bernstein ellipse B(ρ) containing [0, 1] (here ρ > 1 is the parameter of the ellipse – see
(Trefethen 2013) for details). Then it is well-known that

‖f − PTM f‖ = O(ρ−M ), M →∞.

In other words, the expansion of f in orthogonal polynomials converges geometrically fast in M . When this
space is used in GS, we have the following:

Theorem 2.28 ((Adcock & Hansen 2011a)). Let TM be the reconstruction space consisting of the first M
orthonormal Legendre polynomials and let SN be the Fourier sampling space as above. Then, for any fixed
θ ∈ (1,∞), the stable sampling rate Θ(M, θ) is quadratic in M . In particular, if f is analytic in B(ρ) and
the GS approximation f̃N,M implemented with N = Θ(M, θ) samples, then

‖f − f̃N,M‖ = O(ρ−M ).

Example 2.4 For analytic functions, one may use Legendre polynomials instead of boundary wavelets to
improve the reconstruction. From Theorem 2.28 we deduce that for analytic functions we have

‖f − f̃N,M‖ = O(ρ−
√
M ),

when M = Ψ(N, θ) (the stable reconstruction rate). As discussed below, this is actually the best possible
rate for any recovery algorithm using Fourier data.

To visualize improvement over the truncated Fourier series, in Figure 4 we display the reconstruction of
the function f(t) = t5e−t,, t ∈ [−1, 1]. As is evident, the GS reconstruction with Legendre polynomials is
vastly superior to the Fourier series.

Remark 2.4 Theorem 2.28 states that the GS reconstruction converges root-exponentially fast in the num-
ber of samples N = O(

√
M). Although this is certainly rapid convergence, it is much slower than the

convergence rate of the orthogonal projections PTN f . This is due to the more severe, quadratic scaling of
the stable sampling rate.

Unfortunately, a result proved in (Adcock et al. 2012) states that root-exponential convergence is the best
possible for any stable method when reconstructing analytic functions from Fourier samples. Moreover, any
method with faster convergence must be severely ill-conditioned. Since GS with polynomials attains this
stability barrier, it may be considered an optimal method for this problem.

We note, however, that it is possible to circumvent such a barrier by designing methods which converge
only down to a finite, but arbitrarily-small, tolerance. Such methods, although not classically convergent,
appear to be most effective in practice for approximating analytic functions. An example of this is the
method of Fourier extensions (Adcock, Huybrechs & Martı́n-Vaquero 2013e), which is based on GS using
an oversampled Fourier frame as the reconstruction system.
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3 Generalized sampling for inverse and ill-posed problems
Generalized sampling, as introduced in the previous section, reconstructs signals and images from direct
measurements, i.e. inner products {〈f, ψj〉}j∈N. In this section address the extension of GS to the case where
f is defined additionally through an inverse problem. Note that this was originally presented in (Adcock et
al. 2013c). In this section we improve on the results given therein by using the oblique projection analysis
developed in the previous section.

To simplify notation, we now drop the ∼ symbol from the various reconstructions.

3.1 Introduction
Let X and Y be Hilbert spaces and A : X → Y a bounded linear operator. We shall suppose that A is
compact, and that it has the singular system {σk, vk, uk}k∈N, where the orthonormal systems {vk}k∈N and
{uk}k∈N span the spaces V := N(A)⊥ and U := N(A∗)⊥ respectively. Here A∗ denotes the adjoint of A
and N(·) is the nullity of an operator.

Our aim is to solve the problem
Af = g, f ∈ X, g ∈ Y, (3.1)

where we are typically faced with noisy data gδ = g + z with ‖z‖Y ≤ δ. In addition, we shall assume
that we have frame {ψk}k∈N for the sampling space S := N(A∗)⊥ ⊆ Y and a frame {ϕk}k∈N for the
reconstruction space T := N(A)⊥ ⊆ X. Thus the aim is to reconstruct f =

∑
k∈N βkϕk in the subspace

TM = span{ϕ1, . . . , ϕM} (for suitable M ) from finitely many of the noisy samples

S∗gδ = {〈gδ, ψk〉}k∈N.

Recall that S is the synthesis operator for the sampling frame {ψk}k∈N.
Seemingly the most straightforward way in which to do this would be proceed as in standard GS and

consider the least-squares data fitting (see (2.35)):

min
β∈PM (`2(N))

‖S∗RATMβ − S∗Rgδ‖2.

Much as in GS (see (2.26)), this would lead to a reconstruction

fδM,R = TM (T ∗MA∗SRS∗RATM )†T ∗MA∗SRS∗Rgδ, (3.2)

where † denotes the generalized inverse. However, as already mentioned, the problem can be ill-posed and
therefore the generalized inverse in (3.2) need not exist. Hence we are also faced with regularization issues.
In what follows, we shall discuss two different regularization treatments of (3.2). Both techniques rely on
the singular value decomposition of the operator A. This allows for a splitting into separate sampling and
recovery steps. The sampling step in both algorithms is almost the same, whereas the recovery steps are
rather different.

In the literature on regularization theory – see, for example (Louis 1989) – there exist similar and suc-
cessful concepts (e.g. mollifying techniques) but that are primarily designed to obtain approximate/local
inversion formulae. It might be rather interesting (but possibly challenging) to discuss these concepts within
the framework of sampling theory.

3.2 Regularization by filtering
Let us consider the normal equation A∗Af = A∗g, and let A† denote the generalized inverse of A. If
g ∈ D(A†), we can define f† := A†g. If A is injective then it makes sense to define A† := (A∗A)−1A∗.
Consequently, a stabilized version of f† can then be reconstructed as

fα := Rαg, Rα := Fα(A∗A)A∗ (3.3)

for appropriately chosen filter Fα. For an extensive discussion on the choice of Fα, see (Engl, Hanke &
Neubauer 1996, Louis 1989) and references therein. For appropriate βα ∈ `2(N) we now have

fα = Tβα =
∑
k∈N

βαk ϕk = Fα(A∗A)A∗g =
∑
k∈N
Fα(σ2

k)σk〈g, uk〉vk. (3.4)
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Let U and V denote the corresponding synthesis operators for the singular system, and denote their adjoints
(the analysis operators) by U∗ and V ∗ respectively. Then

(V ∗fα)j =
∑
k∈N

βαk 〈ϕk, vj〉 =
∑
k∈N
Fα(σ2

k)σk〈g, uk〉〈vk, vj〉 = Fα(σ2
j )σj〈g, uj〉,

and therefore we have
V ∗Tβα = ΘαΣγ ⇐⇒ Θ−1

α V ∗Tβα = Σγ, (3.5)

where

V ∗T =

 〈ϕ1, v1〉 〈ϕ2, v1〉 · · ·
〈ϕ1, v2〉 〈ϕ2, v2〉 · · ·

...
...

. . .

 , Θα =

 Fα(σ2
1) 0 · · ·

0 Fα(σ2
2) · · ·

...
...

. . .

 , Σ =

 σ1 0 · · ·
0 σ2 · · ·
...

...
. . .

 .

Putting oomputational issues aside for the moment, we note that (3.5) gives a relation for the unknown vector
βα. However, the vector γ = U∗g = {〈g, uj〉}j∈N is not accessible in practice, and must therefore be related
to the known vector of samples S∗g of g (or its noisy version gδ). To do this, we observe that

η = S∗g = S∗UU∗g = S∗Uγ, where S∗U =

 〈u1, ψ1〉 〈u2, ψ1〉 · · ·
〈u1, ψ2〉 〈u2, ψ2〉 · · ·

...
...

. . .

 .

Combining this with (3.5) we now find that βα can be obtained as the solution of two infinite-dimensional
linear systems of equations:

S∗Uγ = S∗g, (3.6)

Θ−1
α V ∗Tβα = Σγ. (3.7)

In order to obtain a computable approximation, we need to discretize these equations. For this, we shall use
ideas based on GS and uneven sections; specifically, the discussion in §2.10.

3.2.1 Derivation

Suppose first that (3.6) is solved exactly, and we have the samples U∗Ng at our disposal for some N ∈ N. Let
M ∈ N be a second parameter. Then we truncate (3.7) and consider the normal equations:

T ∗MVNΘ−2
α,NV

∗
NTMβ

α
n,m = T ∗MVNΘ−1

α,mΣNU∗Ng, (3.8)

where Θα,N = PNΘα|PN (`2(N)) and likewise for ΣN . Assuming M is chosen so that these equations have
a unique solution, we then define the reconstruction

fαN,M = TMβ
α
N,M =

M∑
j=1

(βαN,M )jϕj . (3.9)

As mentioned, in practice we do not have the samples U∗Ng at our disposal, hence fαN,M cannot be realized
directly. Nevertheless, we can obtain approximations to these values by first solving (3.6). For this, we use
a similar approach. Given the noisy samples

ηδ = S∗gδ,

we introduce a second parameter R ∈ N, and define γδN,R ≈ U∗Ng as the solution of

U∗NSRS
∗
RUNγ

δ
N,R = U∗NSRS

∗
Rg

δ.

If we let
gδN,R = UNγ

δ
N,R,

be the corresponding approximation to g, then we can obtain a reconstruction of f that can be realized from
the available samples. To do this we set

fα,δN,M,R = TMβ
α,δ
N,M,R,

where βα,δN,M,R is the solution to

T ∗MVNΘ−2
α,NV

∗
NTMβ

α,δ
N,M,R = T ∗MVNΘ−1

α,NΣNU∗Ng
δ
N,R.
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3.2.2 Analysis

Our analysis of the regularized reconstruction fα,δN,M,R will be based on oblique projections. Let SR = SRS
∗
R

be the partial frame operator for {ψj}j∈N, and define the operator

LαN : X→ VN , LαN =
N∑
k=1

1
(Fα(σ2

k))2
〈·, vk〉vk.

We also define the subspace angles

θ1
R,N = θUN ,SR(UN ), θ2,α

N,M = θTM ,LαN (TM ),

as well as
θ1
∞,N = θUN ,S(UN ), θ2,α

∞,M = θTM ,Lα(TM ),

where S = SS∗ is the infinite frame operator, and

Lα =
∑
k∈N

1
(Fα(σ2

k))2
〈·, vk〉vk.

Lemma 3.1. For fixed N ∈ N, we have θ1
R,N → θ1

∞,N as R→∞. In particular,

1 ≤ lim
R→∞

sec
(
θ1
R,N

)
≤
√
c2
c1
,

where c1 and c2 are the upper and lower frame bounds respectively for the sampling system {ψj}j∈N.

Proof. This lemma is identical to Lemma 2.20 with M and N replaced by M and R and T replaced by U.
Since S = U, we have cos(θUS) = 1, and the result follows.

Lemma 3.2. For fixed M ∈ N, we have θ2,α
N,M → θ2,α

∞,M as N →∞. In particular,

1 ≤ lim
N→∞

sec
(
θ2,α
N,M

)
≤ d2

d1
, (3.10)

where d1 = infk∈N 1/Fα(σ2
k) and d2 = supk∈N 1/Fα(σ2

k).

Proof. Defining the filter Fα as in (3.4), the frame bounds of the frame operator Lα are given by d2
1, d2

2 and
they are finite and bounded away from zero, i.e. 0 < d2

1 ≤ d2
2 < ∞. Consequently, we may apply Lemma

2.20 once more to obtain the result. Note that for (3.10) we use the fact that T = V.

The next lemma relates the reconstructions fαN,M and fα,δN,M,R to oblique projections:

Lemma 3.3. Suppose that cos(θ2,α
N,M ) > 0. Then

fαN,M = PTM ,(LαN (TM ))⊥f
α,

and if cos(θ1
R,N ) > 0, we have

fα,δN,M,R = PTM ,(LαN (TM ))⊥ ◦ Rα ◦ PUN ,(SR(UN ))⊥g
δ.

Proof. The coefficients βαN,M of fαN,M are defined by the equations (3.8). Note that LαN = VNΘ−2
α,NV

∗
N .

Hence the left-hand side of (3.8) is precisely

T ∗MLαNfαN,M .

For the right-hand side, we first note that

σkuk =
1

Fα(σ2
k)
AFα(A∗A)vk,
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and therefore
σk〈g, uk〉 =

1
Fα(σ2

k)
〈Fα(A∗A)A∗g, vk〉,

which gives
ΣNU∗Ng = Θ−1

α,NV
∗
NFα(A∗A)A∗g = Θ−1

α,NV
∗
Nf

α.

Using this, we find that the right-hand side of (3.8) is precisely

T ∗MVNΘ−1
α,NΣNU∗Ng = T ∗MLαNfα.

Hence, using the fact that LαN is self-adjoint, we find that (3.8) is equivalent to the variational equations

〈fαN,M ,LαNϕ〉X = 〈fα,LαNϕ〉X, ∀ϕ ∈ TM , fαN,M ∈ TN ,

or equivalently
〈fαN,M ,Φ〉X = 〈fα,Φ〉X, ∀Φ ∈ LαN (TM ), fαN,M ∈ TM ,

Since cos(θ2,α
N,M ) > 0 these equations have a unique solution whenever fα ∈ T0 := TM⊕(LαN (TM ))⊥, and

it is the oblique projection PTM ,(LαN (TM ))⊥f
α (Lemma 2.13). To obtain the first result, we need only show

that T0 = T. For this, we use Lemma 2.12 and note that dim(LαN (TM )) = dim(TM ) since cos(θ2,α
N,M ) > 0.

For the second result, let βα,δN,M,R be the coefficients of fα,δN,M,R. Arguing as above, we can write

ΣNU∗Ng
δ
N,R = Θ−1

α,NV
∗
NRαgδN,R,

and therefore we obtain the following variational form for fα,δN,M,R:

〈fα,δN,M,R,Φ〉X = 〈RαgδN,R,Φ〉X, ∀Φ ∈ LαN (TM ), fα,δN,M,R

This gives
fα,δN,M,R = PTM ,(LαN (TM ))⊥ ◦ RαgδN,R.

To complete the proof, we merely note that gδN,R = PUN ,(SR(UN ))⊥g
δ since gδN,R is just the GS reconstruc-

tion of gδ in the subspace UN from the samples S∗Rg
δ .

We are now in a position to state and prove the main results for this approximation:

Theorem 3.4. Suppose that cos(θ2,α
N,M ) > 0. Then fαN,M exists uniquely and satisfies the sharp bounds

‖fαN,M‖X ≤ sec
(
θ2,α
N,M

)
‖fα‖X,

and
‖fα − fαN,M‖X ≤ sec

(
θ2,α
N,M

)
‖fα − PTM f

α‖X.

Furthermore, we have

‖f† − fαN,M‖X ≤
(

1 + 2 sec
(
θ2,α
N,M

))
‖f† − fα‖X + sec

(
θ2,α
N,M

)
‖f† − PTM f

†‖X.

Proof. The first and second estimates follow from Corollary 2.11 with U = TM and V = LαN (TM )⊥. The
third estimate can be easily achieved as follows. We have

‖f† − fαN,M‖X ≤ ‖f† − fα‖X + ‖fα − fαN,M‖X

= ‖f† − fα‖X + sec
(
θ2,α
N,M

)
‖fα − PTM f

α‖X

≤ ‖f† − fα‖X + sec
(
θ2,α
N,M

) (
‖(I − PTM )(f† − fα)‖X + ‖(I − PTM )f†‖X

)
=
(

1 + 2 sec
(
θ2,α
N,M

))
‖f† − fα‖X + sec

(
θ2,α
N,M

)
‖f† − PTM f

†‖X.

as required.
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Theorem 3.5. Suppose that cos(θ1
R,N ) > 0 and cos(θ2,α

N,M ) > 0. Then

‖f† − fα,δN,M,R‖X ≤ ‖f
† − fαN,M‖X + CαN,M,R (‖f − PVN f‖X + δ) ,

where
CαN,M,R ≤ sec

(
θ2,α
N,M

)
sec
(
θ1
R,N

)
σN+1 max

k=1,...,N

{
Fα(σ2

k)σk
}
.

Proof. By the triangle inequality, we have

‖f† − fα,δN,M,R‖X ≤ ‖f
† − fαN,M‖X + ‖fαN,M − f

α,δ
N,M,R‖X. (3.11)

It suffices to consider the second term. By Lemma 3.3, we have

fα,δN,M,R = PTM ,(LαN (TM ))⊥ ◦ Rα ◦ PUN ,(SR(UN ))⊥g
δ

= fαN,M + PTM ,(LαN (TM ))⊥
(
Rα ◦ PUN ,(SR(UN ))⊥g

δ − fα
)

= fαN,M + PTM ,(LαN (TM ))⊥ ◦ Rα
(
PUN ,(SR(UN ))⊥g

δ − g
)

= fαN,M + PTM ,(LαN (TM ))⊥ ◦ PVN ◦ Rα
(
PUN ,(SR(UN ))⊥g

δ − g
)
.

Thus, an application of Theorem 2.10 gives

‖fαN,M − f
α,δ
N,M,R‖X ≤ sec

(
θ2,α
N,M

)∥∥PVN ◦ Rα
(
PUN ,(SR(UN ))⊥g

δ − g
)∥∥

X

≤ sec
(
θ2,α
N,M

)
‖PVN ◦ Rα‖Y→X‖PUN ,(SR(UN ))⊥g

δ − g‖Y. (3.12)

Consider the final term of this expression. We have

‖PUN ,(SR(UN ))⊥g
δ − g‖Y ≤ ‖g − PUN ,(SR(UN ))⊥g‖Y + ‖PUN ,(SR(UN ))⊥(g − gδ)‖Y

≤ sec
(
θ1
R,N

) (
‖g − PUN g‖Y + ‖g − gδ‖Y

)
.

Substituting this into (3.12) and recalling that gδ = g + z with ‖z‖Y ≤ δ gives

‖fαN,M − f
α,δ
N,M,R‖X ≤ sec

(
θ2,α
N,M

)
sec
(
θ1
R,N

)
‖PVN ◦ Rα‖Y→X (‖g − PUN g‖Y + δ) . (3.13)

To complete the proof, we make the following two claims. First,

‖PVN ◦ Rα‖Y→X ≤ max
k=1,...,N

{
Fα(σ2

k)σk
}
, (3.14)

and second,
‖g − PUN g‖Y ≤ σN+1‖f − PVN f‖X. (3.15)

For (3.14), let h ∈ U be arbitrary and write h = Uβ for some β ∈ l2(N) with ‖β‖ = ‖h‖Y. Then

PVN ◦ Rαh =
N∑
k=1

Fα(σ2
k)σkβkvk,

and therefore
‖PVN ◦ Rαh‖X ≤ max

k=1,...,N

{
Fα(σ2

k)σk
}
‖h‖Y,

which gives (3.14). Now consider (3.15). Since g = Af , we have 〈g, uk〉 = σk〈f, vk〉, and therefore

‖g − PUN g‖2Y =
∑
k>N

|〈g, uk〉|2 =
∑
k>N

σ2
k|〈f, vk〉|2 ≤ σ2

N+1‖f − PVN f‖2X,

as required. Combining (3.13)–(3.15) gives the result.

Note that, much as with standard GS, the various subspaces angles in the error bounds can be controlled
by appropriately varying N , M and R. This is a consequence of Lemmas 3.1 and 3.2.

25



3.3 Regularization by uneven sections
The approach in the previous section was essentially based on the normal equation A∗Af = A∗g. As an
alternative, we now propose an approach based on directly utilizing the singular value decomposition of A.
Since A = UΣV ∗, we may write

η = S∗g = S∗UΣV ∗Tβ = S∗Uγ,

where f = Tβ as in the previous section. As in the previous approach, we may reformulate this as the two
linear equations

S∗Uγ = S∗g (3.16)

V ∗Tβ = Σ−1γ. (3.17)

We now proceed in a similar manner by discretizing both these equations. Using (3.16), we construct the
following approximation to g:

gδN,R = UN (U∗NSRS
∗
RUN )−1U∗NSRS

∗
Rg

δ,

and using (3.17) we construct an approximation to f :

fN,M = TM (T ∗MVNV
∗
NTM )†T ∗MVNΣ−1

N U∗Ng.

Much as before, fN,M cannot be realized from the available sampling data, and therefore we combine these
two approximations to give the final approximation

fδN,M,R = TM (T ∗MVNV
∗
NTM )†T ∗MVNΣ−1

N U∗Ng
δ
N,R.

3.3.1 Analysis

We proceed in a similar manner to that of the previous approach. Let θ1
R,N be as in the previous section, and

define the new subspace angles
θ2
N,M = θTM ,PVN (TM ).

Much as before, this angle can be controlled by varying N and M appropriately:

Lemma 3.6. For fixed M ∈ N, we have θ2
N,M → 1 as N →∞.

We now require the following lemma:

Lemma 3.7. Suppose that cos(θ2
N,M ) > 0. Then

fN,M = PTM ,(PVN (TM ))⊥f,

and if additionally cos(θ1
R,N ) > 0, then we have

fδN,M,R = PTM ,(PVN (TM ))⊥ ◦ (A∗A)†A∗ ◦ PUN ,(SR(UN ))⊥g
δ.

Proof. Note first that the coefficients βN,M and βN,M,R of fN,M and fN,M,R respectively satisfy

T ∗MVNV
∗
NTMβN,M = T ∗MVNΣ−1

N U∗Ng, (3.18)

and
T ∗MVNV

∗
NTMβN,M,R = T ∗MVNΣ−1

N U∗Ng
δ
N,R. (3.19)

Moreover, we have
T ∗MVNV

∗
N = T ∗MPVN , (3.20)

and, since uk = σkA(A∗A)†vk,

VNΣ−1
N U∗Nh = VNV

∗
N (A∗A)†A∗h = PVN (A∗A)†A∗h, h ∈ U. (3.21)
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In particular,
VNΣ−1

N U∗Ng = PVN f. (3.22)

Substituting (3.20) and (3.22) into (3.18), we deduce that (3.18) is equivalent to the variational problem

〈fN,M ,PVNϕ〉X = 〈f,PVNϕ〉X, ∀ϕ ∈ TM .

Thus fN,M = PTM ,PVN (TM )f by Lemma 2.13 and the fact that cos(θ2
n,m) > 0. Now consider fδN,M,R.

Substituting (3.20) and (3.21) with h = gN,R into (3.19), we immediately deduce that

fδN,M,R = PTM ,(PVN (TM ))⊥ ◦ (A∗A)†A∗gδN,R,

and the result now follows from the fact that gδN,R = PUN ,(SR(UN ))⊥g
δ .

We are now able to provide the main result:

Theorem 3.8. Suppose that cos(θ1
R,N ) > 0 and cos(θ2

N,M ) > 0. Then

‖f† − fδN,M,R‖X ≤ (1 + 2 sec(θ2
N,M ))‖f† − f‖X + sec(θ2

N,M )‖f† − PTM f
†‖X

+ sec
(
θ2
N,M

)
sec
(
θ1
R,N

)(
‖f − PVN f‖X +

δ

σN

)
.

Proof. We have

‖f† − fδN,M,R‖X ≤ ‖f† − f‖X + ‖f − fN,M‖X + ‖fN,M − fδN,M,R‖X.

By the previous lemma, the second term yields

‖f − fN,M‖X ≤ sec(θ2
N,M )‖f − PTM f‖X

≤ sec(θ2
N,M )(2‖f† − f‖X + ‖f† − PTM f

†‖X).

So we now consider the third term. We have

‖fN,M − fδN,M,R‖X = ‖PTM ,(PVN (TM ))⊥
(
f − (A∗A)†A∗ ◦ PUN ,(Sr(UN ))⊥ ◦ gδ

)
‖X

= ‖PTM ,(PVN (TM ))⊥PVN

(
f − (A∗A)†A∗ ◦ PUN ,(Sr(UN ))⊥ ◦ gδ

)
‖X

≤ sec
(
θ2
N,M

)
‖PVN (A∗A)†A∗‖Y→X‖g − PUN ,(SR(UN ))⊥g

δ‖Y
≤ sec

(
θ2
N,M

)
‖PVN (A∗A)†A∗‖Y→X sec

(
θ2
N,R

)
(‖g − PUN g‖Y + δ) . (3.23)

Let h ∈ U. Then

‖PVN (A∗A)†A∗h‖2X =
N∑
k=1

|〈(A∗A)†A∗h, vk〉X|2 =
N∑
k=1

1
σ2
k

|〈h, uk〉Y|2 ≤
1
σ2
N

‖h‖2Y.

Hence ‖PVN (A∗A)†A∗‖Y→X ≤ 1/σN . Combining this with (3.23) and (3.15) and the fact that σN+1 ≤ σN
now gives the result.

3.4 Numerical Examples
In this section we test the frameworks proposed in the previous subsections. First, we discuss a one-
dimensional example for which we analyze the suggested regularized and non-regularized reconstruction
methods. Thereafter, we consider a two-dimensional experiment. The goal is to verify that we can achieve,
even in the presence of noise, a reasonable reconstruction by the proposed sampling-recovery technique.

Example 3.1 In order illustrate the proposed sampling theorems (Theorem 3.5 and 3.8), we consider the
linear operator A : L2([0, 1])→ L2([0, 1]) defined by

g(t) = Af(t) =
∫ t

0

f(s) ds ,
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with singular system {σk, vk, uk} given by

σk =
1

(k + 1/2)π
, vk =

√
2 cos(k + 1/2)πt , uk =

√
2 sin(k + 1/2)πt .

Note that {vk}k∈N and {uk}k∈N form orthonormal systems for L2([0, 1]). To keep technicalities at a reason-
able level, we choose the Fourier basis as both the recovery system {ϕk}k∈Z and sampling system {ψk}k∈Z,
i.e.

ϕk(t) = e2πikt and ψk(t) = e2πikt .

Let the signal f to be reconstructed be defined by f(t) = cos 2πt. Consequently, f can be expanded as
follows,

f(t) = Tβ =
∑
k∈Z

βke
2πikt =

1
2
e2πi(−1)t +

1
2
e2πi(+1)t ,

and in particular, β−1 = 1/2, β1 = 1/2, and βk = 0 for k ∈ Z \ {−1,+1}. Moreover, the data g are given
through g(t) = Af(t) = 1/(2π) sin 2πt. In this particular example we also have explicit expression for all
further required quantities,

γ = U∗g = {γl}l∈N =

{
4
√

2 cos(lπ)
π2(4l2 + 4l − 15)

}
l∈N

η = S∗g = {ηk}k∈Z with η−1 =
−i
4π

, η+1 =
i

4π
and ηk = 0, k 6= ±1

V ∗T =

(√
2((lπ + π/2) cos(lπ)− 2πik)

(2πik)2 + (lπ + π/2)2

)
l∈N,k∈Z

S∗U =

(
(−1)l+1

√
2((lπ + π/2) cos(lπ) + 2πik)

(2πik)2 + (lπ + π/2)2

)
k∈Z,l∈N

.

The approximations to f from the R samples S∗Rg
δ are now given by by

fα,δN,M,R = PTM ,(LαN (TM ))⊥ ◦ Rα ◦ PUN ,(SR(UN ))⊥g
δ and

fδN,M,R = PTM ,(PVN (TM ))⊥ ◦ (A∗A)†A∗ ◦ PUN ,(SR(UN ))⊥g
δ .

For the first approximation we shall consider filtering by Tikhonov regularization, i.e. the entries in Θα,N

are given by Fα(σ2
k) = 1/(α+ σ2

k).
We discuss now several different recovery scenarios. In the first case we choose a fixed (and reasonable)

setting for N , M and R and vary the noise level δ. We then compare the recovery quality of fα,δN,M,R

and fδN,M,R while experimentally tuning the regularization parameter α towards optimal recovery. This
experiment shall show that for a fixed number of data samples and coefficients in the series expansion of the
solution an optimal choice of regularization parameter induces a substantially improved recovery.

In the second case we fix the number M of coefficients in series expansion of the solution and try to find
for different noise levels δ reasonable integers N and R to derive fδN,M,R. For the same numbers M and
R we then experimentally determine an optimal α to compute fα,δN,M,R. This experiment shall show that a
reasonable choice of N and R may feasibly stabilize the recovery and providing approximations that cannot
be significantly improved by a fine tuning of α.

First case: vary z = g − gδ such the relative error εrel = 100 · ‖z‖/‖g‖ is 0%, 5% and 10% and let
M = 20, N = 30 and R = 40. The numerical results are illustrated in the following table and visualized in
Figures 5,6, and 7.

εrel, δ ‖f − fδ20,30,40‖ ‖f − f0,δ
20,30,40‖ ‖f − fαopt,δ20,30,40‖ αopt Fig.

0%, 0 0.6262 0.4995 0.0071 0.00017 5
5%, 0.0056 1.1738 0.9728 0.1536 0.00037 6
10%, 0.0113 1.7593 1.5268 0.2265 0.00061 7

Second case: we first fix M = 10 and ask then, for different relative errors εrel ∈ {0%, 5%, 10%}, for an
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Figure 5: Recovery results for εrel = 0%. Top (from left to right): ηδ = S∗R(g + z) (·) and S∗RUNγ (◦),
βδ20,30,40 (·) and β (◦), fδ20,30,40 = Tnβ

δ
20,30,40 (–) and f (- -). Bottom (from left to right): β0,δ

20,30,40 (·) and β

(◦), f0,δ
20,30,40 = TMβ

0,δ
20,30,40 (–) and f (- -), βαopt,δ20,30,40 (·) and β (◦), fαopt,δ20,30,40 = TMβ

αopt,δ
20,30,40 (–) and f (- -).
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Figure 6: Recovery results for εrel = 5%. Top (from left to right): ηδ = S∗r (g + z) (·) and S∗RUNγ (◦),
βδ20,30,40 (·) and β (◦), fδ20,30,40 = TMβ

δ
20,30,40 (–) and f (- -). Bottom (from left to right): β0,δ

20,30,40 (·) and

β (◦), f0,δ
20,30,40 = TMβ

0,δ
20,30,40 (–) and f (- -), βαopt,δ20,30,40 (·) and β (◦), fαopt,δ20,30,40 = TMβ

αopt,δ
20,30,40 (–) and f (- -).

adequate choice (numerically determined) of N and R in order to derive an optimal approximation fδN,M,R.
Then, we try by fine tuning α to obtain with fα,δN,M,R a comparable or possibly better approximation. The
results are documented in the following table. The illustrations of this experiment are given in Figure 8 (the
illustrations for εrel = 0% are not provided since there is no visual difference).

εrel, δ N R ‖f − fδN,10,R‖ ‖f − f0,δ
N,10,R‖ ‖f − fαopt,δN,10,R‖ αopt Fig.

0%, 0.0 10 1000 0.002114839173 0.002114839160 0.000112 0.0000035 -
5%, 0.0042 40 100 0.0303 0.0433 0.0371 0.000025 8
10%, 0.0075 40 80 0.1044 0.2990 0.2732 0.0001 8

Example 3.2 In the second example we discuss the Radon transform

Rf(τ, ω) =
∫ +

√
1−τ2

−
√

1−τ2
f(τω + tω⊥)dt , (3.24)

where we assume in this example that supp(f) ⊂ D = {x ∈ R2 : ‖x‖ ≤ 1}, and ω ∈ S1, τ ∈ [−1, 1],
see (Louis 1989). The map R is linear and continuous (with norm

√
4π) between L2(D) and L2([−1, 1] ×
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Figure 7: Recovery results for εrel = 10%. Top (from left to right): ηδ = S∗R(g + z) (·) and S∗RUNγ (◦),
βδ20,30,40 (·) and β (◦), fδ20,30,40 = TMβ

δ
20,30,40 (–) and f (- -). Bottom (from left to right): β0,δ

20,30,40 (·) and

β (◦), f0,δ
20,30,40 = TMβ

0,δ
20,30,40 (–) and f (- -), βαopt,δ20,30,40 (·) and β (◦), fαopt,δ20,30,40 = TMβ

αopt,δ
20,30,40 (–) and f (- -).
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Figure 8: Experimental results for εrel = 5%: fδ10,40,100 (t.l.), f0,δ
10,40,100 (t.m.), f0.000025,δ

10,40,100 (t.r.), and for
εrel = 10%: fδ10,40,100 (b.l.), f0,δ

10,40,100 (b.m.), f0.0001,δ
10,40,100 (b.r.). In all subfigures the dashed line (- -) repre-

sents the true solution f .

[0, 2π], g−1), with weight function g(τ) =
√

1− τ2. As a map between these spaces, the Radon transform
has the following singular system (for details see again (Louis 1989)),

{(vml, uml, σml) : m ≥ 0, l ∈ Z : |l| ≤ m,m+ l even } ,

vm,l(x) =

{ √
m+1
π ‖x‖

|l|P
(0,|l|)
(m−|l|)/2(2‖x‖2 − 1)Yl(x/‖x‖) ‖x‖ ≤ 1

0 ‖x‖ > 1

um,l(τ, ω) =
{

1
π g(τ)Um(τ)Yl(ω) |τ | ≤ 1
0 |τ | > 1

σm,l = 2
√

π

m+ 1
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where

P (α,β)
n (x) =

Γ(α+ n+ 1)
n!Γ(α+ β + n+ 1)

n∑
m=0

(
n
m

)
Γ(α+ β + n+m+ 1)

Γ(α+m+ 1)

(
x− 1

2

)m
,

Um(τ) =
sin((m+ 1) arccos(τ))

sin(arccos(τ))
.

Hence, for each f ∈ L2(D), we have Rf =
∑
m,l = σml〈f, vml〉L2(D)uml. We choose as recovery system

for L2(D) = L2(rdrdθ, [0, 1]× [0, 2π]) the separable Haar basis on [0, 1]× [0, 2π],

ϕλ(r, θ) = ψHaar
λ1

(r)ψHaar
λ2

(θ) , λi = (qi, j, ki) ,

where qi prescribes the species of the wavelet (qi = 0 - generator, qi = 1 - corresponding wavelets, i = 1, 2),
j ∈ Z the scales, and (k1, k2) ∈ I the translations. Then, we obtain

〈f, vml〉L2(D) =
∫
D

f(x)vml(x)dx =
∫ 2π

0

∫ 1

0

f(r cos θ, r sin θ)v̄ml(r cos θ, r sin θ)rdrdθ

=
∫ 2π

0

∫ 1

0

f(r cos θ, r sin θ)

√
m+ 1
π

r|l|P
(0,|l|)
(m−|l|)/2(2r2 − 1)e−ilθrdrdθ

=
∑
λ

βλ

∫ 2π

0

ψλ2(θ)e−ilθdθ

√
m+ 1
π

∫ 1

0

ψλ1(r)r|l|+1P
(0,|l|)
(m−|l|)/2(2r2 − 1)dr

=
∑
λ

βλ(V ∗T )λ,ml .

As sampling system, we choose an orthonormal Fourier-Mellin-type basis, {ψn,k}(n,k)∈N×Z, to span L2([−1, 1]×
[0, 2π], g−1), which we define by

ψn,k(τ, θ) =
1
4

√
τ + 1
αnπ

Qn((τ + 1)/2)eiθkg1/2(τ) , (3.25)

where

αn =
1

2(n+ 1)
, Qn(τ) =

n∑
p=0

αn,pτ
p , αn,p = (−1)n+1 (n+ p+ 1)!

(n− p)!p!(p+ 1)!
.

Therefore,

(S∗U)nk,ml = δlk ·
1
2

∫ 1

−1

Um(τ)
√
τ + 1
αnπ

Qn((τ + 1)/2)g1/2(τ)dτ .

The phantom function f to be recovered is now simulated on D by placing N ellipses,

Ek =
{
x ∈ R2 :

∥∥∥∥( ak 0
0 bk

)(
cos νk sin νk

− sin νk cos νk

)(
x− xk

)∥∥∥∥ ≤ rk} , k = 1, . . . , N ,

through,

f0(x) = 0 , fn+1(x) = fn(x)χD\En+1(x) + ξn+1 χEn+1(x) , n = 0, . . . , N − 1 and f(x) := fN (x) .

The k-th ellipse is specified by a set of parameters Πk = (xk, rk, νk, ak, bk, ξk), where xk determines the
localization, rk the radius, νk the orientation, ak, bk the semi-axes, and ξk the plateau height.

In our particular example we selected three ellipses,

E1 : Π1 = (0.5, 0.0, 0.3,−π/12, 1, 0.5, 2)
E2 : Π2 = (−0.5, 0.0, 0.3, π/12, 1, 0.5, 2)
E3 : Π3 = (0,−0.4, 0.3, π/2, 2, 0.6, 3) ,

resulting in a phantom function f(x) = f3(x) which visualized in figure 9. The resolutions (which can be
made as fine as desired) to represent f (on a cartesian and/or polar grid) as well as Rf are restricted in our
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Figure 9: Left: phantom function f on D, middle: Radon transform Rf for m ≤ 30 (resulting in 496
singular functions), right: matrix T ∗256V496Θ−2

α,496W256V
∗
496T256, where for the wavelet system the scale is

limited to 2 ≤ j ≤ 3 (resulting in 256 basis functions).

computational experiments to equispaced grids of size 256 × 256 and 512 × 512. This is of course not fine
enough when significantly increasing the number of recovery, singular and sampling functions. In partic-
ular, the singular and sampling functions contain oscillatory components that indeed require a much finer
resolution. But as we focus here on exemplarily documenting the applicability of the proposed approach,
we restrict ourselves to problem dimensions that cause no extra sophistication when dealing with very large
systems. The approximation to f is now obtained through

fα,δN,M,R = PTM ,(LαN (TM ))⊥ ◦ Rα ◦ PUN ,(SR(UN ))⊥g
δ .

We have derived fα,δN,M,R within the following scenarios, for visual inspection see figure 10,

MR N E(f, fα,δN,M,R), rel.
(wavelet functions) (singular functions) (sampling functions) recovery error

scenario 1 1024 (2 ≤ j ≤ 4) 1326 1681 22.03 %
scenario 2 4096 (2 ≤ j ≤ 5) 4186 4225 15.62 %
scenario 3 16384 (2 ≤ j ≤ 6) 16471 16641 11.40 %

In our particular example the relative data error is εrel = 5% and the corresponding Tikhonov stabilization
is fine tuned by α = 0.00001. The relative recovery error is defined in this experiment by

E(f, fα,δN,M,R) =
‖f − fα,δN,M,R‖L2(D)

‖f‖L2(D)
.

4 Compressed sensing over the continuum
In §2 and §3 we addressed reconstruction problems where an unknown signal was measured according to
a frame or basis and its coefficients were sought in another frame or basis. A key facet of this was that,
despite the infinite-dimensionality of the signal (i.e. it lies in a separable Hilbert space), we have access to
only finitely-many measurements. As the main theorems illustrate, by appropriately varying the relevant pa-
rameters according to the stable sampling rate, we obtain stable, and in some sense, optimal reconstructions.

Thus far, we have not assumed any particular structure for on the unknown signal. The aim of this final
section is to do precisely this. We shall show that when the signal f possesses a sparsity-type structure, it
is possible to obtain vastly improved reconstructions than with standard GS using the same total number of
measurements. The key to this will be an extension of compressed sensing (CS) principles to the continuum
(i.e. infinite-dimensional) setting.

4.1 Compressed sensing
Let us first briefly review standard CS theory (Candès 2008, Donoho 2006, Eldar & Kutyniok 2012, Foucart
& Rauhut 2013). A typical CS setup, and one which is most relevant for our purposes, is as follows. Let
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Figure 10: Top row (from left to right): recoveries of f by fα,δ1024,1326,1681 (scenario 1), fα,δ4096,4186,4225

(scenario 2), fα,δ16384,16471,16641 (scenario 3), where the relative error is εrel = 5% and the corresponding
Tikhonov stabilization is fine tuned by α = 0.00001. Bottom row (from left to right): modulus of difference
between f and fα,δ1024,1326,1681, fα,δ4096,4186,4225, and fα,δ16384,16471,16641.

{ψj}Nj=1 and {ϕj}Nj=1 be two orthonormal bases of CN , the sampling and sparsity bases respectively, and
write

A = (uij)
N
i,j=1 ∈ CN×N , uij = 〈ϕj , ψi〉.

Note that the matrix A, the change-of-basis matrix, is an isometry of CN . Let f ∈ CN be an unknown
signal, and suppose that

f =
N∑
j=1

βjϕj ,

for coefficients β = (β1, . . . , βN )>. Then we have the linear relation

Aβ = f̂ , (4.1)

where f̂ = (f̂1, . . . , f̂N )> and
f̂j = 〈f, ψj〉, j = 1, . . . , N, (4.2)

are the samples of f . Here 〈·, ·〉 denotes the usual inner product on CN .
Whilst one could solve the linear system (4.1) to find β, the goal of CS is to recover f using onlym� N

of the measurements (4.2). To do this, CS relies on three key principles:

• Sparsity,
• Incoherence,
• Uniform random subsampling.

Let us now introduce these concepts:

Definition 4.1 (Sparsity). A signal f ∈ CN is said to be s-sparse in the orthonormal basis {ϕj}Nj=1 if at
most s of its coefficients in this basis are nonzero. In other words, f =

∑N
j=1 βjϕj , and the vector β ∈ CN

satisfies |supp(x)| ≤ s, where
supp(β) := {j : βj 6= 0}.
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Definition 4.2 (Incoherence). Let A = (aij)Ni,j=1 ∈ CN×N be an isometry. The coherence of A is

µ(A) = max
i,j=1,...,N

|aij |2 ∈ [N−1, 1]. (4.3)

We say that A is incoherent if µ(A) is small, and perfectly incoherent if µ(A) = N−1.

Suppose a signal f is sparse in a basis {ϕj}Nj=1. CS theory states that f can be recovered exactly (with
probability at least 1− ε) from m measurements subsampled uniformly at random subsampled, i.e. from the
collection

{f̂j : j ∈ Ω},

where Ω ⊆ {1, . . . , N}, |Ω| = m is chosen uniformly at random, provided m satisfies

m & µ(A) ·N · s ·
(
1 + log(ε−1)

)
· logN, (4.4)

(see (Candès & Plan 2011) and (Adcock & Hansen 2011a))1. Moreover, reconstruction of f can be achieved
by practical numerical algorithms. For example, one may solve the convex optimization problem

min
η∈CN

‖η‖l1 subject to PΩAη = PΩf̂ , (4.5)

where PΩ ∈ CN×N is the diagonal projection matrix with jth entry 1 if j ∈ Ω and zero otherwise. Critically,
if sampling and sparsity systems are sufficiently incoherent, in particular, if µ(A) = O

(
N−1

)
, then we find

from (4.4) that m need only be proportional to the sparsity s times by a logarithmic factor in N . In situations
where s � N , which is often the case in practice, this translates into a substantial saving in the number of
required measurements over the linear approach based on (4.1). Note that the scaling µ(A) = O

(
N−1

)
is

achieved if, for example, A is the DFT matrix.
It goes without saying that these fundamental results were groundbreaking when they were introduced,

and have generated a new field of sparse approximation with CS at its core. However, there are some draw-
backs. Notably, the standard theory of CS is finite dimensional: it concerns the recovery of sparse vectors
in vector spaces. On the other hand, a large class of inverse problems are based on an infinite-dimensional
framework. As we have discussed, important examples occur in applications such as medical imaging, due
primarily to the physics behind the measurement systems used in X-ray tomography and Magnetic Reso-
nance Imaging (MRI), as well as radar, sonar and microscopy.

Putting sparsity aside for the moment, let us note a key difference between the finite- and infinite-
dimensional cases. In finite dimensions there is an invertible linear system (4.1) which allows f to be
recovered exactly from its full set of measurements. However, in infinite dimensions, where the set of mea-
surements is countably infinite, there is no such way to recover f exactly. Thus, before sparsity can be even
considered, one must first address the question of how to recover f from a finite subset of its measurements.
Fortunately, the work in §2 and §3 has shown precisely how to address this problem: namely, by using gen-
eralized sampling. The developments we make in this section are directly based on this: namely, they show
how to extend GS to exploit subsampling, thus culminating in a framework for infinite-dimensional CS.

Perhaps surprisingly, when making this generalization of CS to the infinite-dimensional setting, the three
principles of the finite-dimensional case – namely, sparsity, incoherence and uniform random subsampling –
must be dispensed with and replaced by new principles. In particular, we shall explain why neither sparsity
nor incoherence are witnessed for analog problems, and consequently why an alternate sampling strategy is
required. In order to develop the new theory, we therefore replace these principles with three new concepts:

• Asymptotic sparsity,
• Asymptotic incoherence,
• Multilevel random subsampling.

The remainder of this section is devoted to developing these principles and the new theory based on them.
Specifically, in §4.3–4.5 we introduce these concepts and explain their relevance to practical problems. Next,
in §4.7 we introduce the new theory based on these principles. Finally, in §4.8–4.10 we discuss three impor-
tant consequences of these new concepts. These consequences, summarized in Figure 11, are at odds with
the conceived wisdom stemming from finite-dimensional CS.

1Here and elsewhere in this section we shall use the notation a & b to mean that there exists a constant C > 0 independent of all
relevant parameters such that a ≥ Cb
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The success of CS is resolution dependent

The optimal subsampling strategy is signal dependent

There is no Restricted Isometry Property

Asymptotic Sparsity

Asymptotic Incoherence

Multi-level sampling

Figure 11: Consequences of the new principles.

4.2 Discrete models and crimes
Before doing this, let us first illustrate why it is important to adopt an infinite-dimensional model. In short,
the reason for this is the following. The standard discrete models used in CS, which are based on the
discrete Fourier and discrete wavelet transforms, result in mathematical crimes (the inverse and wavelet
crimes respectively), and this leads to substandard reconstructions when applied to real data, or, perhaps more
perniciously, artificially good reconstructions with inappropriately simulated data. Fortunately the infinite-
dimensional CS framework we develop later allows one to avoid both these crimes, and thereby obtain better
reconstructions. Moreover, even in situations where such crimes may be tolerated (e.g. problems with low
SNR), we shall see that in order to properly understand the behaviour of the resulting algorithms one must
also use the infinite-dimensional framework (see §4.6).

We now discuss the two aforementioned crimes.

4.2.1 The inverse crime

The inverse crime (Hansen 2010, Kaipio & Somersalo 2007, Mueller & Siltanen 2012, Guerquin-Kern et
al. 2012) in the setting of Fourier sampling stems from two numerical discretizations. The first is when one
assumes a pixel model for the unknown signal f , i.e.

f =
N∑
j=1

β̃jϕj , N ∈ N, (4.6)

where the ϕjs are step functions. The second (and most serious part of the crime) comes from substituting
(4.6) into (1.1) and then replacing the integral by a Riemann sum. This results in the discretization of (1.1):

y = Udf β̃, β̃ = (β̃1, . . . , β̃N )>,

where Udf ∈ CN×N denotes the discrete Fourier transform. Note that the crime here stems from the fact that
the vector y has nothing to do with the actual samples of f arising from its continuous Fourier transform.
Indeed, the vector y is a rather poor approximation to the vector of point samples of Ff (Guerquin-Kern et
al. 2012).

4.2.2 The wavelet crime

The so-called wavelet crime (Strang & Nguyen 1996) is the following phenomenon. Given a function
f ∈ L2(R), a scaling function ϕ and a mother wavelet ψ, we are interested in obtaining the the wavelet coef-
ficients of f via the discrete wavelet transform. However, instead of assuming that f =

∑∞
j=−∞ βjϕ(· − j)

and computing the wavelet coefficients from the exact values {βj} via the discrete wavelet transform, one
simply replaces the βjs by pointwise samples of f . As Strang and Nguyen put it: “Is this legal? No, it is
a wavelet crime.” (Strang & Nguyen 1996, p. 232). As we will see in the examples below, the use of the
wavelet crime in CS may cause artefacts and unnecessarily slow convergence.

4.2.3 The inverse and wavelet crimes in finite-dimensional compressed sensing

In problems where one encounters samples of the Fourier transform of a signal f , it is typical to assume that
f is sparse in a wavelet basis. To fit this into the usual finite-dimensional CS framework, it is standard to
discretize according to the discrete Fourier and wavelet transforms, and solve

min
η∈C2N

‖η‖l1 subject to PΩUdfV
−1
dw η = PΩf̂ , (4.7)
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or some variant thereof in the case of data corrupted by noise. Here, critically, f̂ is the vector of the first 2N
continuous Fourier samples of the function f .

Since f is sparse in a wavelet basis, the hope is that (4.7) recovers the coefficients of f exactly. However,
the use of the discrete wavelet and Fourier transforms introduces two crimes into the reconstruction (4.7).
As we now explain, this has a catastrophic effect on (4.7) and means that sparse signals f cannot in fact be
recovered exactly by (4.7). See Example 4.1 for a numerical illustration of this phenomenon.

To explain why this occurs, let us first consider the matrix U−1
df . This matrix maps the vector of Fourier

coefficients f̂ of a function f to a vector consisting of pointwise values on an equispaced 2N -grid of points
in [0, 1]. However, this mapping commits an error: for an arbitrary function f , the result is only an approx-
imation to the grid values of f . The question is, how large is this error, and how does it affect (4.7) and its
solutions? To understand this, let x ∈ C2N be the vector defined by

Udfx = f̂ .

It is simple to see that x consists precisely of the values of the function

fN (t) = ε

N∑
j=−N+1

Ff(jε)e2πiεjt, ε = 1/2, (4.8)

on the equispaced 2N -grid. Since this function is nothing more than the truncated Fourier series of f ,
one deduces that the approximation resulting from modelling the continuous Fourier transform with Udf is
equivalent to replacing a function f by its partial Fourier series fN .

Let us now consider the discrete wavelet transform x0 ∈ C2N of x:

x0 = Vdwx.

The right-hand side of the equality constraint in (4.7) now reads

PΩUdfV
−1
dw x0.

Thus, for the method (4.7) to be successful, i.e. to recover sparse vectors of wavelet coefficients, we require
x0 = Vdwx to be a sparse vector. Unfortunately this can never happen. Sparsity of x0 is equivalent to
stipulating that the partial Fourier series fN be sparse in a wavelet basis. However, whilst f was assumed to
be sparse in a wavelet basis, the function fN consists of smooth complex exponentials. Hence it cannot have
a sparse representation in a wavelet basis.

4.2.4 Infinite-dimensional compressed sensing

The approach (4.7) is loosely based on the principle of discretizing first and then applying finite-dimensional
tools, and its failures described above can be accredited to the poor discretizations of the discrete Fourier
and wavelet transforms. As an alternative, we now introduce the infinite-dimensional CS approach to avoid
these issues. This is loosely based on the principle of first formulating the reconstruction problem in infinite
dimensions, and then discretizing in a careful manner.

Suppose that {ϕj}j∈N is the given orthonormal sparsity system (e.g. a wavelet basis), and let {ψj}j∈N
be an orthonormal sampling basis (e.g. the Fourier bais). If

f =
∑
j∈N

βjϕj ,

then, as described in §2, the unknown vector of coefficients β = {βj}j∈N is the solution of

Aβ = f̂ ,

where

A =

 〈ϕ1, ψ1〉 〈ϕ2, ψ1〉 · · ·
〈ϕ1, ψ2〉 〈ϕ2, ψ2〉 · · ·

...
...

. . .

 ,
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and f̂ = {f̂j}j∈N is the infinite vector of samples of f . Let Ω ⊆ N be a set of indices of size |Ω| = m ∈ N
and suppose that we have access to the samples {f̂j : j ∈ Ω}. The goal is to recover the vector β from these
samples. To do so, we we first formulate the infinite-dimensional optimization problem

inf
η∈`1(N)

‖η‖`1 subject to PΩAη = PΩf̂ . (4.9)

Note that no crimes have been committing in formulating (4.9), and we shall see below that if f is s-sparse
then, under appropriate conditions on Ω (e.g. it is chosen randomly according to an appropriate distribution),
f can be recovered exactly from (4.9). Unfortunately, besides some special circumstances, we cannot solve
(4.9) numerically. Thus having formulated the problem in infinite dimensions, we now discretize. For this,
we follow the same ideas that lead to GS. We introduce an additional parameter K ∈ N and consider the
finite-dimensional optimization problem

min
η∈PK(`2(N))

‖η‖l1 subject to PΩAPKη = PΩf̂ . (4.10)

We refer to this as infinite-dimensional CS. Much as with GS, the parameter K must be sufficiently large so
as to ensure a good reconstruction. To see this, we note the following (Adcock & Hansen 2011a, Prop. 7.4):

Proposition 4.3. Let A ∈ B(`2(N)), β ∈ `1(N) and PΩ ∈ B(`2(N)) be a finite-rank projection. Then, for
all sufficiently large K ∈ N, there exists an ξK satisfying

‖ξK‖`1 = inf
η∈`1(N)

{‖η‖`1 : PΩAPKη = PΩAβ} .

Moreover, for each ε > 0 there is a K0 ∈ N such that, whenever K ≥ K0, we have ‖ξK − ξ̃K‖`1 < ε, where
ξ̃K satisfies

‖ξ̃K‖`1 = inf
η∈`1(N)

{‖η‖`1 : PΩAη = PΩAβ} . (4.11)

In particular, if there is a unique minimizer ξ of (4.11) then ξK → ξ in the `1-norm.

This proposition means that computed solutions of (4.10) approximate those of (4.9) for large K. Thus,
for the purposes of analysis, we may consider (4.9), whereas (4.10) is used in computations.

Before presenting an example of (4.10), we now briefly remark on one particular difference between
(4.10) and finite-dimensional approach (4.7). First, let us denote the bandwidth of the sampling set Ω by
M ∈ N, i.e.M is the smallest number for which Ω ⊆ {1, . . . ,M}. Then the matrix in (4.10) is a subsampled
version of the uneven section

PMUPK .

Conversely, in finite dimensions one always consides subsampled versions of square matrices. In the infinite-
dimensional approach, such uncoupling of the sampling bandwidth and the sparsity bandwidth K is critical
to get good reconstructions. Unsurprisingly given the discussion in §2.8, finite sections (i.e. letting M = K)
lead to extremely poor results (Adcock & Hansen 2011a), but the situation improves dramatically asK →∞
(i.e. uneven sections).

4.2.5 Examples

We will now present several examples demonstrating first how the inverse crime and the wavelet crime impact
the reconstructions given by (4.7), and second how these can be overcome by employing infinite-dimensional
CS (4.10). In all examples we use a so-called two-level sampling scheme. Specifically, we set

Ω = Ω1 ∪ Ω2 ⊆ {1, . . . , N}, (4.12)

where Ω1 = {1, . . . , N1} and Ω2 ⊆ {N1 + 1, . . . , N} is chosen uniformly at random, and, in the finite-
dimensional CS case we solve

min
η∈C2N

‖η‖l1 subject to PΩUdfV
−1
dw η = PΩf̂ . (4.13)

In all examples below, we set N = 1024, N1 = 100 and |Ω2| = 100. The reason for using such an index set
Ω, as opposed to the usual approach in compressed sensing (see §4.1), is due to coherence issues, and will
be discussed further in §4.5.
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Figure 12: Left: the reconstruction based on finite-dimensional technique (4.13). Right: the error of the
reconstruction.
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Figure 13: Left: the piecewise smooth test function f1. Right: the smooth test function f2

Example 4.1 In the first example, we investigate what happens if we actually have a function

f =
N∑
j=1

β̃jϕj ,

for some N ∈ N that is a finite sum of step functions (recall that this was the first assumption leading up to
the inverse crime). In particular, we choose f = −χ[0,1/2) + χ[1/2,1), which is precisely the Haar wavelet.
In Figure 12 we display the reconstruction obtained from solving (4.10), where Vdw is based on the Haar
wavelet. Since f is sparse in the Haar wavelet basis, we may have hoped to recover it exactly. However, this
is by no means the case, and as we see, the reconstruction is polluted by many oscillations.

To explain this, we can appeal to the previous discussion. Consider the vector

x = U−1
df PN f̂ ,

which, as discussed above, is the vector of pointwise evaluation of the truncated Fourier series fN . Hence

x̃ = Vdwx

is a vector of (approximations to the) Haar wavelet coefficients of fN . Since the truncated Fourier series
of f is an oscillatory function (it suffers from the Gibbs phenomenon), this vector is not sparse and we
consequently do not recover f exactly. Note that this is also the cause of the oscillatory artefacts seen in the
reconstruction in Figure 12.

Example 4.2 In the second example, we first further illustrate the artefacts that arise from solving (4.13),
and then show how the infinite-dimensional CS approach (4.10) yields a much improved result. To do so, we
consider the piecewise smooth function

f1(t) = e−tχ[0,0.6)(t) + sin(10t)χ[0.2,1)(t), t ∈ [0, 1],
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Figure 14: Upper left: reconstruction obtained from (4.13) using periodized DB6 wavelets. Lower left:
zoomed reconstruction from (4.13) using boundary DB6 wavelets. Upper right: reconstruction from (4.10)
using boundary DB6 wavelets. Lower right: zoomed reconstruction from (4.10) using boundary DB6
wavelets.

(see left panel of Figure 13). In Figure 14 the reconstructions using firstly periodized, and secondly bound-
ary, Daubechies 6 (DB6) wavelets are displayed. Note that the infinite-dimensional compressed sensing
implementation always yields a superior reconstruction.

Example 4.3 In this third example, we demonstrate the most serious impact of the crimes by considering
the smooth test function

f2(t) = e−tχ[0,1)(t) + sin(10t)χ[0,1)(t), t ∈ [0, 1],

(see right panel of Figure 13). The left panels of Figure 15 show the reconstruction errors resulting from
solving (4.13) with periodized and boundary DB6 wavelets. The right panels show the corresponding results
for the infinite-dimensional CS approach (4.10) using boundary DB6 wavelets and orthonormal Legendre
polynomials. Clearly the finite-dimensional approach gives highly substandard reconstructions in compari-
son to the infinite-dimensional approach. Once more, this is easy to explain. The finite-dimensional approach
yields a wavelet approximation to the truncated Fourier series fN of f . However, fN converges extremely
slowly to f (since f is smooth, but not periodic), and this leads to the large errors displayed in the left pan-
els. Conversely, since f is a smooth function, the truncated wavelet expansion with the boundary wavelets
converges much faster than the Fourier series (Mallat 2009), and the convergence is even better when using
Legendre polynomial expansions. The infinite-dimensional implementation (4.10) correctly exploits these
properties in order to obtain superior reconstructions. For an infinite-dimensional implementation of com-
pressed sensing in MRI see (Guerquin-Kern et al. 2011).

The purpose of the remainder of this paper is to explain the success of the infinite-dimensional CS
approach (4.10) as seen in these examples. As mentioned, in order to do this we are required to discard
the three standard principles of finite-dimensional CS in favour of three new principles: asymptotic sparsity,
asymptotic incoherence and multilevel random subsampling. We now introduce these new concepts. The
new theory is presented in §4.4–4.7.
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Figure 15: Left: errors for the reconstructions obtained from (4.13) using periodized (top) and boundary
(bottom) DB6 wavelets. Right: errors for the reconstruction obtained from (4.10) using boundary DB6
wavelets (top) and Legendre polynomials (bottom).

4.3 Asymptotic sparsity in levels
In order to introduce a new notion of sparsity in infinite dimensions, let us commence with a series of
observations. First, in infinite dimensions, one cannot allow s nonzero coefficients of a sparse vector β ∈
`2(N) to have completely arbitrary locations in the infinite range 1, 2, . . .. In particular, one must place an
upper bound on the bandwidth M , i.e. the smallest integer such that

supp(β) ⊆ {1, . . . ,M},

of the nonzero coefficients. The reason for this can be traced back to GS. Consider the case of Fourier
sampling with a wavelet sparsity basis. A large value of M would necessarily require a sampling strategy
that took (possibly sub-) samples at frequencies within some correspondingly large bandwidth N , where N
is related to M through some property similar to the stable sampling rate. If N were not taken sufficiently
large, there would be no way to recover the fine scale wavelet coefficients from only low frequency Fourier
measurements. Thus, at the very least, we must consider classes of signals that are not merely s-sparse, in
the sense that they have only s nonzero entries, but actually (s,M)-sparse, i.e. the s nonzero entries lie in
some given bandwidth M .

Our second observation pertains to the nature of the sparsity. Let {ϕj}j∈N be a given orthonormal basis,
and suppose that f =

∑
j∈N βjϕj is (s,M)-compressible in this basis, i.e. it is well approximated by an

(s,M)-sparse signal. Then we may ask the following question: for ‘real-life’ signals f is there any pattern to
the sparsity? To answer this, let us note first that since {ϕj}j∈N is an orthonormal basis, the coefficient vector
β = {βj}j∈N ∈ `2(N). In particular, βj → 0 as j → ∞. Hence the most significant coefficients naturally
correspond to smaller indices j. Thus there will always be a sufficiently large value of the bandwidth M for
which the ‘important’ coefficients of the signal f lie in the range {1, . . . ,M}.

This gives an indication that the sparsity of a typical signal increases as the bandwidth M →∞. To see
this more clearly, let us now investigate the important case of a wavelet basis {ϕj}j∈N in more detail. It is
often stated that typical signals and images are compressible in wavelet bases. But is there any structure to
this sparsity? Recall that associated to such a basis, there is a natural decomposition of N into finite subsets
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Figure 16: Left: scaled periodic DB6 wavelet coefficients {
√
j|βj |}j∈N of the piecewise smooth test function

f1. Right: scaled boundary DB6 wavelet coefficients. Note that boundary wavelets yield better sparsity.

according to different scales, i.e.
N =

⋃
k∈N
{Mk−1 + 1, . . . ,Mk},

where 0 = M0 < M1 < M2 < . . . and {Mk−1 + 1, . . . ,Mk} is the set of indices corresponding to the kth

scale. Note that, for wavelets, Mk −Mk−1 = O
(
2k
)

in the 1D case and Mk −Mk−1 = O
(
4k
)

in the 2D
case. Suppose now that ε ∈ (0, 1] is given, and let

sk := sk(ε) = min
{
K :

∥∥∥ K∑
i=1

βπ(i)ϕπ(i)

∥∥∥ ≥ ε∥∥∥ Mk∑
i=Mk−1+1

βjϕj

∥∥∥}, (4.14)

in order words, sk is the effective sparsity at the kth scale. Here π : {1, . . . ,Mk −Mk−1} → {Mk−1 +
1, . . . ,Mk} is a bijection such that |βπ(i)| ≥ |βπ(i+1)|. Note that this definition makes sense even if {ϕj}j∈N
is a tight frame. If {ϕj}j∈N is an orthonormal basis then we have that

sk = min
{
K :

( K∑
i=1

|βπ(i)|
2
)1/2
≥ ε

∥∥PMk−1
Mk

β
∥∥}, (4.15)

where the projection PMk−1
Mk

is defined as

P
Mk−1
Mk

β = {0, . . . , 0, βMk−1+1, . . . , βMk
, 0, . . .}. (4.16)

Sparsity of a signal f in a wavelet basis thus means that for a given r ∈ N, the ratio s/Mr � 1, where
s = s1 + . . . + sr is the total effective sparsity of f and M = Mr. However, this is not only the case in
practice, but moreover, one also has asymptotic sparsity, i.e.

sk/(Mk −Mk−1)→ 0,

rapidly as k → ∞, for every ε ∈ (0, 1]. In other words, typical signals and images are much more sparse at
fine scales (large k) than at coarse scales (small k). This phenomenon is heuristically displayed in Figure 16
and quantified in Figure 17. In particular, in Figure 17 each vertical cross-section corresponds to a particular
value of ε, and sk/(Mk−Mk−1) is where the (coloured) kth function intersects the vertical line (the wavelet
used is DB8).

This observation should come as little surprise. It is well-known that piecewise smooth signals or images
have wavelet coefficients that at fine scales are vanishingly small when their supports are contained within
smooth regions of f and are only large when their supports intersect its discontinuities. Since the number of
discontinuities is fixed, this translates into increasing sparsity at finer scales, and this is precisely what we
see in Figure 17.

To summarize, for images and signals encountered in practice, it is always the case that their wavelet co-
efficients possess asymptotic sparsity. Note that this conclusion does not change fundamentally if we replace
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Figure 17: Relative sparsity of Daubechies 8 wavelet coefficients on dyadic levels of the GLPU phantom
(Guerquin-Kern et al. 2012) and a real-world image. sk(ε) is defined in (4.15). The levels here correspond
to the wavelet scales. Each curve shows the relative sparsity at level k as a function of ε, i.e. the minimum
fraction of largest coefficients in the kth level whose `2 norm is larger than ε-percent of the `2 norm of all
coefficients in the kth level.

wavelets by other related approximation systems, such as curvelets (Candès & Donoho 2004), contourlets
(Do & Vetterli 2005) or shearlets (Kutyniok, Lemvig & Lim 2012), which is what we observe in Figure 18.

We are now in a position to formally define the concept of asymptotic sparsity in levels:

Definition 4.4. For r ∈ N let M = (M1, . . . ,Mr) ∈ Nr with 1 ≤M1 < . . . < Mr and s = (s1, . . . , sr) ∈
Nr, with sk ≤ Mk −Mk−1, k = 1, . . . , r, where M0 = 0. We say that β ∈ l2(N) is (s,M)-sparse if, for
each k = 1, . . . , r,

∆k := supp(β) ∩ {Mk−1 + 1, . . . ,Mk},

satisfies |∆k| ≤ sk. We denote the set of (s,M)-sparse vectors by Σs,M.

Definition 4.5. Let f =
∑
j∈N βjϕj ∈ H, where β = (βj)j∈N ∈ l1(N). We say that f is (s,M)-

compressible with respect to {ϕj}j∈N if σs,M(f) is small, where

σs,M(f) := min
η∈Σs,M

‖β − η‖l1 . (4.17)

Note that the levels here do not necessarily correspond to wavelet scales, although, as discussed above,
this is obviously an important case. We note also that these definitions are natural generalizations of (s,M)-
sparsity and compressibility.

4.3.1 Sparsity is too crude

Having introduced the new concept of asymptotic sparsity, it is important to ask whether it is actually nec-
essary. Indeed, could it be the case that standard sparsity, or more precisely (s,M)-sparsity, adequately
explains the types of reconstructions seen in the examples in the previous section without having to resort to
a more complicated level-based sparsity?
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Figure 18: Relative sparsity as in Figure 17 of frame coefficients other than wavelets, all showing asymptotic
sparsity. Top: Curvelets. Middle: Contourlets. Bottom: Shearlets. The different levels depicted correspond
to the decomposition scales of each frame.
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As it transpires, onne can show that this is not the case by means of a simple numerical experiment.
Suppose that one were able to provide a theoretical recovery guarantee that related the total number of
samples m to the sparsity s (i.e. an estimate similar to the finite-dimensional result (4.4)). The sparsity of a
signal is unchanged by random permutation of its coefficients. Thus, in order to test whether the relevance
of such recovery guarantees to actual experiments, one can perform the following test. First one applies CS
to an image with a certain subsampling pattern (i.e. a certain index set Ω). This is shown in Figure 19. Next
one takes the original image, computes its wavelet coefficients, forms a new image by reversing the order
of the wavelet coefficients, and then runs the same reconstruction algorithm (with, importantly, the same
subsampling pattern) on this new image, giving a new set of reconstructed coefficients. Finally, one reverses
the order of the computed coefficients to give the final reconstruction. The result of this process is shown in
Figure 20. Had sparsity been the correct signal model to explain the recovery results for the original image,
then we would have seen a similar reconstruction in Figure 20 since the sparsity of the image is unchanged
by permutations. However, this recovered image is clearly drastically worse. Thus we conclude that sparsity
is indeed too crude to explain the reconstructions seen in practice.

This fact is perhaps not surprising. Suppose an image had s nonzero Haar wavelet coefficients, or in
other words, it is piecewise constant with a number of jumps proportional to s. It is known that in order to
recover a piecewise constant function stably, one must take Fourier samples in a range where the maximal
frequency is proportional to the reciprocal of the minimal distance between consecutive jumps (Candès &
Fernandez-Granda 2012). Now suppose that the s nonzero coefficients occur at the s lowest indices. Then
this minimal distance is rather large. However, if those s coefficients are permuted to a fine wavelet scale,
then this minimal distance becomes substantially smaller. Thus, one cannot expect to reconstruct the latter
function from the sampling pattern used for the former, even though the sparsity is identical.

Of course, asymptotic sparsity in levels does not allow such permutations, since doing so would change
the parameter s. In this sense, it is a more realistic signal model to analyze the true reconstruction quality
achieved in practical CS simulations.

4.3.2 Sparsity-based theory of compressed sensing in infinite dimensions

Despite having argued why sparsity is too crude a signal model in infinite dimensions, in order to explain
the next principle of asymptotic incoherence it is useful to recall an earlier theoretical result on infinite-
dimensional CS based on sparsity. Such a theory was introduced in (Adcock & Hansen 2011a), and in
particular, the following result was proven. Suppose that

supp(β) = {j : βj 6= 0} ⊆ {1, . . . ,M}, |supp(β)| = s,

for s,M ∈ N and letm,N ∈ N be chosen so that the so-called weak balancing property holds (see Definition
4.10). Suppose also that Ω ⊆ {1, . . . , N} is chosen uniformly at random with |Ω| = m. Then f =∑
j∈N βjϕj is recovered exactly from (4.9), provided

m & µ(A) ·N · s · (1 + log(ε−1)) · log(m−1MN
√
s). (4.18)

Note that this result is similar to the corresponding finite-dimensional estimate (4.4), and indeed, the latter is
a corollary of (4.18).

4.4 Asymptotic incoherence
We now turn our attention to the second concept of asymptotic incoherence. To introduce this, let us compare
the finite-dimensional CS estimate (4.4) to (4.18). Although superficially these results are very similar, there
is a key difference between them. In (4.18), the infinite matrix A is fixed independently of the sampling
bandwidth N , whereas in (4.4) the N ×N matrix A usually changes with N . In finite dimensions it is there-
fore possible to construct matrices A for which µ(A) = O

(
N−1

)
(e.g. the DFT matrix), and in such cases

one guarantees through (4.4) exact recovery of all s-sparse vectors using roughly s logN measurements.
In infinite dimensions, the situation changes completely. For a given infinite matrix A one can only

guarantee such near-optimal recovery for sufficiently small N : specifically, N . 1/µ(A). Since N is
usually at least the size of the signal bandwidth M , this means that there will be infinitely many (s,M)-
sparse signals (specifically those with bandwidth larger than this threshold) for which exact recovery is not
possible with near-optimal numbers (i.e. proportional to s up to log factors) of measurements.
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Figure 19: Left and Middle: Reconstruction of the image from 10% of its Fourier coefficients at 1024×1024
resolution using two sub-sampling patterns. Right: DB8 wavelet coefficients of the original image.
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Figure 20: Left and Middle: Reconstruction of the image formed by reversing its wavelet coefficients, from
10% of its Fourier coefficients at 1024×1024 resolution using the same two sub-sampling patterns used in
Figure 19. Right: Reversed DB8 wavelet coefficients of the original image.

Fortunately, the situation is not completely hopeless, since it is indeed possible given an arbitrarily small
µ∗ > 0 to design an infinite matrix A with a coherence µ(A) ≤ µ∗. However, it is rare for such a matrix to
correspond to the physical sampling system such as those found in MRI or X-ray tomography. Indeed, the
usual formulations of these problems result in systems with large coherences. For instance, in the examples of
§4.2.5, which assume Fourier sampling with either wavelet or polynomial sparsity, the coherence µ(A) ≈ 1
(Adcock et al. 2013d). Thus, for any realistic bandwidthM , no substantial subsampling is possible according
to (4.18). This is sometimes referred to as the coherence barrier.

On the face of it, this statement flies in the face of the good numerical recovery results seen in §4.2.5.
There is no contradiction here, however. In particular, the results in §4.2.5 were obtained by choosing the
sampling set Ω according to (4.12), as opposed to uniformly at random, which is the setting of (4.18). The
reason for the success of the former in comparison to the latter is due to the second key principle we now
introduce: namely, the so-called asymptotic incoherence of the Fourier and wavelet (or polynomial) bases.

Let PN ∈ B(l2(N)) be the projection operator onto span{ej : j = 1, . . . , N}, where {ej}j∈N is the
canonical basis for l2(N). The abstract definition of asymptotic incoherence is as follows:

Definition 4.6. Let A ∈ B(l2(N)) be an isometry. Then A is asymptotically incoherent if

µ(P⊥NA), µ(AP⊥N )→ 0, N →∞. (4.19)

Equivalently, A is asymptotically incoherent if the coherence of the infinite matrices formed by replacing
either the first N rows or columns of A by zeros tends to zero as N →∞. Note that it is not always the case
that two orthonormal bases {ψj}j∈N and {ϕj}j∈N give rise to an asymptotically incoherent matrix A (e.g. in
the case ψj = ϕj , ∀j, one has µ(P⊥NA) = µ(AP⊥N ) = 1, ∀N ). However, asymptotic incoherence is indeed
witnessed in the following important situations:
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Figure 21: Plots of the absolute values of the entries of the matrix A for corresponding to Fourier sampling
with Haar wavelets (left) and Legendre polynomials (right). Lighter regions correspond to larger values and
darker regions to smaller values.

• Let {ψj}j∈N be the Fourier basis on [0, 1] and {ϕj}j∈N be any orthonormal basis of compactly
supported wavelets associated with a multiresolution analysis (MRA). Then µ(P⊥NA), µ(AP⊥N ) =
O
(
N−1

)
as N →∞ (Adcock et al. 2013d, Thm. 3.2).

• Let {ψj}j∈N be the Fourier basis on [0, 1] and {ϕj}j∈N be the orthonormal basis of Legendre polyno-
mials. Then µ(P⊥NA), µ(AP⊥N ) = O

(
N−2/3

)
as N →∞ (Jones, Adcock & Hansen 2013).

It is known that µ(P⊥NA) and µ(AP⊥N ) cannot both decrease faster than N−1 (Jones et al. 2013). Hence the
combination of Fourier and wavelets possesses so-called perfect asymptotic incoherence.

An illustration of asymptotic incoherence for the two examples listed above is given in Figure 21. Note
that the large entries of the matrix A in both cases are located near the low frequencies in the sampling and
sparsity bases (recall that we index the Fourier basis over Z as opposed to N), and the entries get progressively
smaller as one moves away either vertically or horizontally.

4.5 Multilevel random subsampling
Suppose A is an asymptotic incoherent, yet globally coherent, matrix. We are interested in subsampling its
rows so as to take advantage of the asymptotic sparsity in the signal to be recovered. This question is, how
does one best do this? Clearly one cannot subsample the first N rows uniformly at random, since the high
global coherence will prohibit good recovery. However, the asymptotic incoherence of A means that its high
coherence is concentrated only in its first few rows. Thus, to ensure good recovery we need to fully sample
these rows, whereas in the remaining rows, where the coherence is smaller, we are free to subsample.

LetN1, N,m ∈ N be given. This argument now leads us to consider an index set Ω of the form Ω = Ω1∪
Ω2, where Ω1 = {1, . . . , N1}, and Ω2 ⊆ {N1 + 1, . . . , N} is chosen uniformly at random with |Ω2| = m.
We refer to this as a two-level sampling scheme. Note that the index set (4.12) used in the examples in §4.2.5
has precisely this form. As we shall show later, the amount of subsampling possible (i.e. the parameter m)
in the region corresponding to Ω2 will depend solely on the sparsity of the signal and coherence µ(P⊥N1

A),
which is of course much smaller than the global coherence µ(A) since A is asymptotically incoherent.

The two-level scheme represents the simplest type of subsampling map for asymptotically incoherent
matrices. There is no reason, however, to restrict our attention to just two levels (full and subsampled). In
general, we may consider multilevel schemes, defined as follows:

Definition 4.7. Let r ∈ N, N = (N1, . . . , Nr) ∈ Nr with 1 ≤ N1 < . . . < Nr, m = (m1, . . . ,mr) ∈ Nr,
with mk ≤ Nk −Nk−1, k = 1, . . . , r, and suppose that

Ωk ⊆ {Nk−1 + 1, . . . , Nk}, |Ωk| = mk, k = 1, . . . , r,
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are chosen uniformly at random, where N0 = 0. We refer to the set

Ω = ΩN,m := Ω1 ∪ . . . ∪ Ωr.

as an (N,m)-multilevel sampling scheme.

The same guiding principle applies as in the two-level case. In the region of highest coherence, i.e.
Ω1, we take more measurements, and as coherences decreases, i.e. as the level number k increases, we
take progressively fewer. Note that our introduction of multilevel schemes is not just for the purposes of
mathematical intricacy: in practice, they are often more effective than two-level schemes.

4.6 Asymptotic sparsity, asymptotic incoherence and multilevel random subsam-
pling in finite dimensions

Somewhat surprisingly, these three new principles, whilst motivated by infinite-dimensional considerations
are actually relevant in finite dimensions as well. Indeed, digital signals and images are not just sparse in
discrete wavelet bases, but, much like their analog analogues are in fact asymptotically sparse in levels. And
moreover, if one considers the discrete model of Fourier sampling, where the sampling is modelled via the
DFT, then one finds exactly the same phenomenon of asymptotic incoherence. Thus, multilevel sampling
should also be applied in this case. Note that the theory we shall develop below is equally applicable in this
setting, and finite-dimensional results are corollaries of the infinite-dimensional theorems.

The reason for this connection is that such finite-dimensional problems typically arise out of discretiza-
tions of infinite-dimensional problems. Thus it should come as little surprise that asymptotic sparsity in
wavelets, i.e. orthogonal bases over the continuum, and asymptotic incoherence with the continuous Fourier
transform should be transferred over when discretizing.

To clarify this, let make this connection explicit for the discrete CS model (4.7). If we embed the matrix
UdfV

−1
dw ∈ Cn×n in the natural way into B(l2(N)), then by using the properties of the discrete wavelet

transform, convergence of Fourier series and the Lebesgue dominated convergence theorem, we get

WOT-lim
n→∞

UdfV
−1
dw = A, (4.20)

where

A =

 〈ϕ1, ψ1〉 〈ϕ2, ψ1〉 · · ·
〈ϕ1, ψ2〉 〈ϕ2, ψ2〉 · · ·

...
...

. . .

 ,

theϕjs are the wavelets used, theψj are the complex exponentials and WOT denotes the weak operator topol-
ogy. Note that this is a very weak form of convergence (non-uniform convergence of the matrix elements),
and as we have seen, this results in artefacts (some spectacularly bad) in the finite-dimensional CS. However,
(4.20) gives a clear picture as to why we will also see asymptotic incoherence even in the finite-dimensional
model, simply because it is a (poor) discretization of a fundamentally infinite-dimensional problem with the
same property.

We remark also that, even if the artefacts resulting from the finite-dimensional approach (4.7) were
tolerable in some application, in order to properly understand the reconstructions obtained, one still needs to
argue (due to the fact that the data arises from the continuous model) via (4.20). Thus infinite-dimensional
CS also provides the link between discrete CS and continuous data.

4.7 Theory
We are now ready to present our theory for CS based on asymptotic sparsity, asymptotic incoherence and
multilevel random subsampling. Note that in realistic problems, signals are never exactly sparse (or asymp-
totically sparse), and their measurements are always contaminated by noise. Let f =

∑
j βjϕj be a fixed

signal, and let
y = PΩf̂ + z = PΩAβ + z,

be its noisy measurements, where z ∈ ran(PΩ) is a noise vector satisfying ‖z‖ ≤ δ for some δ ≥ 0. In our
theorems we shall consider the following problem:

inf
η∈`1(N)

‖η‖`1 subject to ‖PΩAη − y‖ ≤ δ. (4.21)
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Clearly the equality-constrained problem

inf
η∈`1(N)

‖η‖`1 subject to PΩAη = y,

is just a special case corresponding to δ = 0.
In order to state our theorems, we first require several definitions:

Definition 4.8. Let A ∈ B(`2(N)) be an isometry. Given N ∈ N we define

µN = µ(P⊥NA).

If N = (N1, . . . , Nr) ∈ Nr and M = (M1, . . . ,Mr) ∈ Nr with 1 ≤ N1 < . . .Nr and 1 ≤M1 < . . . < Mr

we define the (k, l)th local coherence of A with respect to N and M by

µN,M(k, l) =
√
µ(PNk−1

Nk
AP

Ml−1
Ml

) · µ(PNk−1
Nk

A), k, l = 1, . . . , r,

where N0 = M0 = 0 and PNk−1
Nk

, PMl−1
Ml

are as in (4.16). Further, we let

µN,M(k,∞) =
√
µ(PNk−1

Nk
AP⊥Mr−1

) · µ(PNk−1
Nk

A), k, l = 1, . . . , r,

Definition 4.9. Let A be an isometry of either CN×N or B(l2(N)). For N = (N1, . . . , Nr) ∈ Nr, M =
(M1, . . . ,Mr) ∈ Nr with 1 ≤ N1 < . . . < Nr and 1 ≤ M1 < . . . < Mr, s = (s1, . . . , sr) ∈ Nr and
1 ≤ k ≤ r, let

Sk = Sk(N,M, s) = max
η∈Θ
‖PNk−1

Nk
Aη‖2,

where N0 = M0 = 0, the projection PNk−1
Nk

is defined in (4.16), and Θ is given by

Θ = {η : ‖η‖`∞ ≤ 1, |supp(PMl−1
Ml

η)| = sl, l = 1, . . . , r}.

Definition 4.10. Let A ∈ B(l2(N)) be an isometry. Then N ∈ N and K ≥ 1 satisfy the weak balancing
property with respect to A, M ∈ N and s ∈ N if

‖PMA∗PNAPM − PM‖`∞→`∞ ≤
1
8

(
log1/2

2

(
4
√
sKM

))−1

, (4.22)

where ‖·‖`∞→`∞ is the norm on B(`∞(N)). We say that N and K satisfy the strong balancing property with
respect to A, M and s if (4.22) holds, as well as

‖P⊥MA∗PNAPM‖`∞→`∞ ≤
1
8
. (4.23)

Note that the balancing property is the direct analogue of the stable sampling rate for infinite-dimensional
CS. See Remark 4.1.

4.7.1 The finite-dimensional case

To avoid pathological cases we will assume from now on that the total sparsity s ≥ 3. This is simply to make
sure that log(s) ≥ 1.

We commence with the finite-dimensional case:

Theorem 4.11. Let A ∈ CN×N be an isometry and β ∈ CN . Suppose that Ω = ΩN,m is a multilevel
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Let (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, be any pair such that the
following holds: for ε > 0 and 1 ≤ k ≤ r,

1 &
Nk −Nk−1

mk
· (log(ε−1) + 1) ·

(
r∑
l=1

µN,M(k, l) · sl

)
· log (N) , (4.24)

where s := s1 + . . .+ sr and
mk & m̂k · (log(ε−1) + 1) · log (N) ,

48



with m̂k satisfying

1 &
r∑

k=1

(
Nk −Nk−1

m̂k
− 1
)
· µN,M(k, l) · s̃k, ∀ l = 1, . . . , r, (4.25)

for all s̃1, . . . , s̃r ∈ (0,∞) such that

s̃1 + . . .+ s̃r ≤ s1 + . . .+ sr, s̃k ≤ Sk(N,M, s).

Suppose that ξ ∈ `1(N) is a minimizer of (4.21). Then, with probability exceeding 1− sε, we have that

‖ξ − β‖ ≤ C ·
(
δ ·
√
K ·

(
1 + L ·

√
s
)

+ σs,M(f)
)
, (4.26)

for some constantC, where σs,M(f) is as in (4.17),L = 1+
√

log2(6ε−1)

log2(4KM
√
s)

andK = maxk=1,...,r

{
Nk−Nk−1

mk

}
.

If mk = Nk −Nk−1, 1 ≤ k ≤ r, then this holds with probability 1.

4.7.2 The infinite-dimensional case

We shall discuss Theorem 4.11 in a moment, but let us first present the corresponding infinite-dimensional
result. For this, we require the following notation:

M̃ = min{i ∈ N : max
k≥i
‖PNUek‖ ≤ 1/(32K

√
s)}.

Here K is defined below.

Theorem 4.12. Let A ∈ B(`2(N)) be an isometry and β ∈ `1(N). Suppose that Ω = ΩN,m is a multilevel
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Let (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, be any pair such that the
following holds:

(i) the parameters

N := Nr, K := max
k=1,...,r

{
Nk −Nk−1

mk

}
,

satisfy the strong balancing property with respect to A, M := Mr and s := s1 + . . .+ sr;

(ii) for ε > 0 and 1 ≤ k ≤ r,

1 &
Nk −Nk−1

mk
· (log(ε−1) + 1) ·

(
r∑
l=1

µN,M(k, l) · sl

)
· log

(
KM̃

√
s
)
,

(with µN,M(k, r) replaced by µN,M(k,∞)) and

mk & m̂k · (log(ε−1) + 1) · log
(
KM̃

√
s
)
,

where m̂k satisfies (4.25).

Suppose that ξ ∈ `1(N) is a minimizer of (4.21). Then, with probability exceeding 1− sε,

‖ξ − β‖ ≤ C ·
(
δ ·
√
K ·

(
1 + L ·

√
s
)

+ σs,M(f)
)
, (4.27)

for some constant C, where σs,M(f) is as in (4.17), and L = C ·
(

1 +
√

log2(6ε−1)

log2(4KM
√
s)

)
. If mk = Nk−Nk−1

for 1 ≤ k ≤ r then this holds with probability 1.

This theorem and its finite-dimensional analogue give conditions on the number of measurements mk

required in the kth level in terms of the sparsity s, the local coherences µN,M(k, l) and the quantities
Sk(N,M, s) for exact recovery of (s,M)-compressible signals up to an error determined by firstly the noise
δ and the (s,M)-term approximation error σs,M(f). Note that the estimates (4.26) and (4.27) are direct
extensions of standard (i.e. one-level) CS results to the multilevel setting. We remark also that it is possible
to provide some simpler results in the special case of two levels. See (Adcock et al. 2013d) for details.

It is crucial to understand the various estimates in Theorems 4.11 and 4.12. We discuss this next. But,
first we make the following remark on the role of the balancing property, which is the primary difference
between the two results.
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Remark 4.1 The balancing property ensures that the truncated matrix PNAPM is close to an isometry.
Much like with the stable sampling rate in GS, this is necessary in order to ensure stability in the mapping
between measurements and coefficients. Note that, also analogously to the stable sampling rate, the balancing
property does indeed hold, provided N is chosen sufficiently large in comparison to M . On the other hand,
no balancing property is required in the finite-dimensional case since PNAPM ≡ A is an isometry by
assumption.

4.7.3 Sharpness of the estimates – the block-diagonal case

To interpret the theorems presented above, let us first consider the block-diagonal case. To this end, suppose
that Ω = ΩN,m is a multilevel sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈
Nr. Let (s,M), where M = (M1, . . . ,Mr) ∈ Nr, and suppose for simplicity that M = N. Consider the
block-diagonal matrix

CN×N 3 A =
r⊕

k=1

Ak, Ak ∈ C(Nk−Nk−1)×(Nk−Nk−1), A∗kAk = I,

where N0 = 0. Note that in this setting we have

Sk = sk, µN,M(k, l) = 0, k 6= l,

in Theorem 4.11. Also, since µ(N,M)(k, k) = µ(Ak), equations (4.24) and (4.25) reduce to

1 &
Nk −Nk−1

mk
·
(
log(ε−1) + 1

)
· µ(Ak) · sk · logN,

and

1 &

(
Nk −Nk−1

m̂k
− 1
)
· µ(Ak) · sk.

In particular, it suffices to take

mk & (Nk −Nk−1) ·
(
log(ε−1) + 1

)
· µ(Ak) · sk · logN, 1 ≤ k ≤ r. (4.28)

This is as one expects: the number of measurements in the kth level depends on the size of the level multiplied
by the asymptotic incoherence and the sparsity in that level. Note that this result recovers the standard one-
level results in finite dimensions (Candès & Plan 2011, Adcock & Hansen 2011a) up to the 1− sε bound on
the probability. In particular, the typical bound would be 1−ε. The question as to whether or not this s can be
removed in the multilevel setting is open, although such a result would be more of a cosmetic improvement.

4.7.4 Sharpness of the estimates – the non-block diagonal case

The previous argument demonstrated that Theorem 4.11 is sharp, up to the probability term, in the sense that
it reduces to the usual estimate (4.28) for block-diagonal matrices. A key step in showing this is noting that
the quantities Sk reduce to the sparsities sk in the block-diagonal case. Unfortunately, this is not true in the
general setting. Note that one has the upper bound

Sk ≤ s = s1 + . . .+ sr,

however in general there is usually interference between different sparsity levels, which means that Sk need
not have anything to do with sk, or can indeed be proportional to the total sparsity s.

On the face of it, this may seem an undesirable aspect of the theorems, since Sk may be significantly
larger than sk, and thus the estimate on the number of measurements mk required in the kth level may also
be much larger than the corresponding sparsity sk. Could it therefore be that the Sks are an unfortunate
artefact of the proof? As we now show by example, this is not the case.

To do this, we consider the following setting. Let N = rn for some n ∈ N and N = M =
(n, 2n, . . . , rn). Let W ∈ Cn×n and V ∈ Cr×r be isometries and consider the matrix

A = V ⊗W,
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where ⊗ is the usual Kronecker product. Note that A ∈ CN×N is also an isometry. Now suppose that
β = (β1, . . . , βr) ∈ CN is an (s,M)-sparse vector, where each βk ∈ Cn is sk-sparse. Then

Aβ = y, y = (y1, . . . , yr), yk = Wzk, zk =
r∑
l=1

vklβl.

Hence the problem of recovering β from measurements y with an (N,m)-multilevel strategy decouples into
r problems of recovering the vector zk from the measurements yk = Wzk, k = 1, . . . , r. Let ŝk denote
the sparsity of zk. Since the coherence provides an information-theoretic limit (Candès & Plan 2011), one
requires at least

mk & n · µ(W ) · ŝk · log n, 1 ≤ k ≤ r. (4.29)

measurements at level k in order to recover each zk, and therefore recover β, regardless of the reconstruction
method used.

We now consider two examples of this setup:

Example 4.4 Let π : {1, . . . , r} → {1, . . . , r} be a permutation and let V be the matrix with entries vkl =
δl,π(k). Since zk = βπ(k) in this case, the lower bound (4.29) reads

mk & n · µ(W ) · sπ(k) · log n, 1 ≤ k ≤ r. (4.30)

Now consider Theorem 4.11 for this matrix. First, we note that a simple argument gives that

Sk = sπ(k).

In particular, Sk is completely unrelated to sk, and may be much larger than sk if the permuted value
sπ(k) � sk. Substituting this into Theorem 4.11 and noting that µN,M(k, l) = µ(W )δl,π(k) in this case, we
arrive at the condition

mk & r · n · µ(W ) ·
(
log(ε−1) + 1

)
· sπ(k) · log(nr).

Up to factors in r, this is equivalent to (4.30).

Example 4.5 Now suppose that V is the r × r DFT matrix. Suppose also that s ≤ n/r and that the βk’s
have disjoint support sets, i.e. supp(βk) ∩ supp(βl) = ∅, k 6= l. Then by construction, each zk is s-sparse,
and therefore the lower bound (4.29) reads

mk & n · µ(W ) · s · log n, 1 ≤ k ≤ r.

After a short argument, one finds that s/r ≤ Sk ≤ s in this case. Hence, Sk is typically much larger than
sk. Moreover, after noting that µN,M(k, l) = 1

rµ(W ), we find that Theorem 4.11 gives the condition

mk & r · n · µ(W ) ·
(
log(ε−1) + 1

)
· s · log(nr).

Thus, Theorem 4.11 obtains the lower bound in this case as well.

These examples show that the Sks cannot be removed in general from any estimates on the number
of measurements mk. In this sense, the theorems are sharp. Moreover, they illustrate the phenomenon of
interference, and in particular, that the number of samples mk required in each level need not be related to
the sparsity sk in the corresponding level.

Fortunately, in the important case of wavelets and Fourier sampling, with the sparsity levels taken to be
wavelet scales, one can show by analyzing the behaviour of the Sks that if the sampling levels are designed
appropriately, then the number of measurements mk in the kth level is proportional to sk plus terms that
decay exponentially in the level l 6= k. See (Adcock et al. 2013d) for details. Thus, up to log factors, CS
with multilevel sampling recovers wavelet coefficients using optimal numbers of measurements.

4.8 First consequence: the success of compressed sensing is resolution dependent
In the final three subsections, we discuss three main consequences of our theorems. To commence, we
consider a rather intriguing phenomenon that occurs in the presence asymptotic sparsity and asymptotic
incoherence: namely resolution dependence. We illustrate this via the following two examples.
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256x256

Error:

16.06%

512x512

Error:

11.80%

1024x1024

Error:

9.22%

2048x2048

Error:

6.96%

4096x4096

Error:

4.28%

Figure 22: Multi-level subsampling of 5% Fourier coefficients using a subsampling pattern with 100 levels
(concentric circles). The left column (full sampled) and center column (subsampled) are crops of 256×256
pixels of the original full resolution versions, whilst the right column shows the uncropped subsampling
pattern used. The error shown is the relative error between the subsampled and full sampled versions.
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(a) 256×256 full sampled (left) and 10% subsampled (center). Relative error to full sampling is 11.72%. Artefacts
are obvious.

(b) 4096×4096 full sampled (left) and 10% subsampled (center), showing crops of 256×256 to preserve pixel size.
Relative error to full sampling is 2.94%. Artefacts are mostly gone.

Figure 23: Improvement at 10% subsampling between resolutions. The subsampling map is shown in the
right column.

Example 4.6 Here we recover an image of a wrist-watch from (continuous) Fourier samples using DB4
wavelets (the inverse crime is largely avoided by truncating the discrete Fourier transform of a much higher
resolution image). We use the same sampling pattern – a 100 level sampling scheme with 5% of the to-
tal samples – and we keep the 5% proportion fixed as the resolution grows. The experiment is described
in Figures 22 and Figure 23, where the subsampled reconstruction is compared to that obtained from full
sampling.

Resolution dependence in this case means that as the resolution grows the subsampled reconstruction
gets closer and closer to the full sampled reconstruction. In other words, at high resolution we obtain almost
as good a quality reconstruction using only 5% of the samples. Note that it is precisely the asymptotic nature
of the sparsity and the incoherence that give rise to the phenomenon.

Example 4.7 A more striking result of asymptotic sparsity and asymptotic incoherence is obtained by run-
ning a similar experiment, but this time fixing the number of coefficients being sampled, rather than the
fraction. This is done in Figure 24, where 5122 = 262144 Fourier coefficients were sampled in all cases.
Artificial fine details were hidden in the image and then several reconstructions were performed: the linear
reconstruction of the subsampled 2048×2048 version by zero-padding the first 512×512 coefficients, and
the multi-level subsampled 2048×2048 reconstruction.

This experiment illustrates that, at higher resolutions, CS with a multilevel strategy recovers the fine
details of an image in a way that is not possible with the other sampling strategy. In other words, by spread-
ing out the same number of measurements according to a multilevel strategy, one successfully exploits the
asymptotic sparsity and asymptotic incoherence to obtain resolution enhancement.
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Figure 24: Subsampling a fixed number of 5122 = 262144 Fourier coefficients. Left: 2048×2048 linear
reconstruction from the first 5122 = 262144 Fourier coefficients (zero padded). Middle: 2048×2048 re-
construction in the DB8 basis via `1-optimization from the first 5122 = 262144 Fourier coefficients (zero
padded). Right: 2048×2048 reconstruction in the DB8 basis via `1-optimization from the same number
5122 = 262144 of Fourier coefficients taken from a multi-level scheme consisting of 100 levels, as used in
Figure 22.

4.9 Second consequence: the optimal subsampling strategy is signal structure de-
pendent

Theorems 4.11 and 4.12 demonstrate that the required sampling density at the kth level is determined (up to
a log factor) by

1 &
Nk −Nk−1

mk

(
r∑
l=1

µN,M(k, l) · sl

)
,

1 &
r∑

k=1

(
Nk −Nk−1

m̂k
− 1
)
· µN,M(k, l) · s̃k, ∀ l = 1, . . . , r.

Thus, it is clear that the optimal sampling strategy must depend on sparsity structure: i.e. the distribution of
the levels Mk and the sparsities sk. This phenomenon is confirmed by the following example:

Example 4.8 In Figure 25a we consider the reconstruction of two real-world images using 20% of their
Fourier coefficients subsampled using a multi-level scheme. Now suppose we perform the following experi-
ment. Similarly to what was done in §4.3.1, we reverse the ordering of the wavelet coefficients (Figure 25b)
in order to obtain a new image f̃ , and then apply the exact same sampling patterns used in Figure 25a to
recover f̃ from its Fourier measurements. Having done this we once more reverse the order of the (recon-
structed) wavelet coefficients so as to obtain a reconstruction of the initial f . The result of this process is
shown in Figure 25b. As is evident, this gives markedly different reconstructions. In particular, the same
sampling pattern, the same total sparsity, but different signal structure yield highly contrasting results.
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(a) Two image reconstructions from 20% of their Fourier coefficients at 1024×1024 chosen according to a multilevel
sampling scheme. The upper-right inset shows the wavelet coefficients of the original images.

(b) Reversed wavelet coefficients (inset) and the reconstructions from the reversed coefficients at 1024×1024, using
the same subsampling patterns used above in (a).

Figure 25: Reconstructions of two images using wavelet coefficients (top) and reversed wavelet coefficients
(bottom).

4.10 Third consequence: no Restricted Isometry Propery (RIP)
Let us recall the definition of the restricted isometry property (Eldar & Kutyniok 2012, Foucart & Rauhut
2013):

Definition 4.13. A matrix A satisfies the the Restricted Isometry Property (RIP) of order k if there exists a
δk such that

(1− δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2

holds for all k-sparse vectors x.

A standard theorem in CS is the following:
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Theorem 4.14. Suppose thatA satisfies the RIP of order 2k with δ2k <
√

2−1 and we obtain measurements
of the form y = Ax, then any minimiser x̂ of

min ‖z‖`1 subject to Az = y

satisfies

‖x̂− x‖ ≤ C0
σk(x)1√

k
. (4.31)

In this case recall that
σk(x)1 := min

y∈Σk
‖x− y‖`1 ,

where Σk denotes the set of k-sparse vectors. What Theorem 4.14 says is that when A satisfies the RIP, the
ordering of the non-zero coefficients does not matter. Thus, there is a very easy numerical experiment that can
be carried out in order to determine whether or not the RIP holds in practice: namely, the experiment done in
Example 4.8. In particular, the ordering of the coefficients of x is reversed to make x̃, new measurements are
created i.e. ỹ = Ax̃, a reconstruction x̂1 is obtained by `1-optimization, and finally reversing the ordering of
x̂1 gives x̂2. Note that if the RIP holds then x̂2 should also satisfy the error bound (4.31). As demonstrated
in Figures 25a and 25b this is certainly not the case for Fourier and wavelet sensing matrices.

We remark that this is but one example of this phenomenon. Similar tests can be done with essentially
any operator that stems from an infinite-dimensional problem where one will observe asymptotic incoherence
and asymptotic sparsity. Note that this includes virtually all problems in medical imaging.

The RIP is a popular tool for analyzing CS algorithms. In fact, it is possible to prove that given enough
measurements (or equivalently, a sufficiently small sparsity) the RIP will hold for Fourier sampling with
Haar wavelets (Krahmer & Ward 2012). However, the above experiment clearly indicates that for realistic
subsampling percentages and realistic sparsities, the observed reconstruction quality is not explained by
a RIP. In view of this, the third conclusion of our work is that the RIP is of limited value in analyzing
compressive imaging strategies. Simply put, the RIP leads to highly pessimistic estimates on the number
of measurements required over that which is actually necessary in practice. (Asymptotic) coherence, on the
other hand, is both a relevant and powerful tool for understanding recoverability in this setting.2
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