Sparsity and Compressed Sensing in Inverse
Problems

Evelyn Herrholz and Dirk Lorenz and Gerd Teschke and Dennis Trede

Abstract This chapter is concerned with two important topics in the context of
sparse recovery in inverse and ill-posed problems. In first part we elaborate condi-
tions for exact recovery. In particular, we describe how both ¢!-minimization and
matching pursuit methods can be used to regularize ill-posed problems and more-
over, state conditions which guarantee exact recovery of the support in the sparse
case. The focus of the second part is on the incomplete data scenario. We discuss ex-
tensions of compressed sensing for specific infinite dimensional ill-posed measure-
ment regimes. We are able to establish recovery error estimates when adequately
relating the isometry constant of the sensing operator, the ill-posedness of the un-
derlying model operator and the regularization parameter. Finally, we very briefly
sketch how projected steepest descent iterations can be applied to retrieve the sparse
solution.
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1 Introduction

Many applications in science and engineering require the solution of an operator
equation Kx = y. Often only noisy data y® with ||y’ —y|| < & are available, and
if the problem is ill-posed, regularization methods have to be applied. During the
last three decades, the theory of regularization methods for treating linear problems
in a Hilbert space framework has been well developed, see, e.g., [23, 29, 30, 39].
Influenced by the huge impact of sparse signal representations and the practical fea-
sibility of advanced sparse recovery algorithms, the combination of sparse signal
recovery and inverse problems emerged in the last decade as a new growing area.
Currently, there exist a great variety of sparse recovery algorithms for inverse prob-
lems (linear as well as for nonlinear operator equations) within this context, see,
e.g., [5,6,7, 14, 15, 16, 25, 26, 41, 44, 45]. These recovery algorithms are success-
ful for many applications and have lead to breakthroughs in many fields. However,
the feasibility is usually limited to problems for which the data are complete and
where the problem is of moderate dimension. For really large-scale problems or
problems with incomplete data, these algorithms are not well-suited and often far
off exact recovery or fail completely.

Within this chapter we focus on two neighboring questions arising in sparse re-
covery of solutions of inverse problems. The first is concerned with exact recovery
conditions in the complete data scenario, and the second is concerned with sparse
recovery in the compressively sensed data scenario.

Exact recovery. The two most widely used recovery methods, namely ¢'-mini-
mization and matching pursuit methods, can be related to two classical methods for
regularization of ill-posed problems: ¢!-minimization is a special case of variational
regularization in which the operator equation Kx = y is replaced by a well-posed
minimization problem with a sparsity constraint. Matching pursuit methods are re-
lated to iterative regularization methods in which one uses an iterative method to
solve the operator equation and uses a stopping criterion to prevent noise amplifica-
tion. We describe how both #!'-minimization and matching pursuit methods can be
used to regularize ill-posed problems and moreover, state conditions which guaran-
tee exact recovery of the support in the sparse case.

Compressive sensing. For the incomplete data situation, the mathematical tech-
nology called compressive sensing, which turned out to be quite successful in sparse
signal recovery, was established several years ago by D. Donoho, see [18]. A major
breakthrough was achieved when it was proven that it is possible to reconstruct a
signal from very few measurements under certain conditions on the signal and the
measurement model, see [8, 9, 10, 19, 20, 18, 24, 42]. In [12] it was shown that if
the sensing operator satisfies the restricted isometry property the solution can be re-
constructed exactly by minimization of an ¢; constrained problem, provided that the
solution is sparse enough. Classical formulations of compressed sensing are finite
dimensional. Quite recently, continuous formulations have appeared, see [1] (full
continuous sensing model) and see, e.g., [22, 33, 38] (problem of analog-to-digital
conversion). Within this chapter we summarize extensions of the infinite dimen-
sional model in [22] to the case of compressively sampling ill-posed problems and
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provide iterative sparse recovery principles and corresponding error estimates, for
detailed discussions see [31]. Further extensions towards generalized and compres-
sive sampling also on the context of ill-posed problems can be found in [3], [2], and

[4].

2 Exact recovery for ill-posed problems

In this section we describe how both ¢! -minimization and matching pursuit methods
can be used to regularize ill-posed problems and moreover, state condition which
guarantee exact recovery of the support in the sparse case.

2.1 Orthogonal matching pursuit

In a Banach space X, we assume that we have a given dictionary of unit-normed
atoms (e;) = &. We assume that the solutions to an operator equation Kx =y (with
K : X — Y bounded, injective and linear and Y a Hilbert space) can be expressed
sparsely in &, i.e. that

x=)Y oe; with oGeR, |aflp=:N<eo.
i€Z

Now assume that instead of y = Kx we are given a noisy measurement y¢ with
|ly — || < € and aim to recover a good approximation of x from the measurement
ye.

In the following we denote with I the support of the coefficient vector ., i.e. I =
{i € Z| a; # 0}. For any subset J C Z we denote &(J) := {e;|i € J}.

The above setting is of practical relevance, e.g. in mass spectrometry [32]
where the signal is modeled as a sum of Dirac peaks (so-called impulse trains)
x =Y o; 8(- —1;). Another example can be found in digital droplet holography,

i€Z,
cf. [43], where images arise as superposition of characteristic functions of balls
with different centers #; and radii rj, x =}, o ; xB,, (-—1).
ijeZ

In this section we approach the problem “Kx = y&” by iteratively including more
and more atoms in the representation of x in a “greedy” fashion—an algorithmic idea
which is also known under the name matching pursuit. We define another normed

dictionary
Ke i

7 = {d}icz = {m };ez'

Note that & is well defined by the injectivity of K. In any step of our iterative
method we select that atom from the dictionary & which is correlates most with
the residual (hence the name “greedy” method). To stabilize the solution of “Kx =
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y©” the iteration has to be stopped early enough. We only investigate the so-called
orthogonal matching pursuit (OMP), first proposed in the signal processing context
by Davis et al. in [36] and Pati et al. in [40] as an improvement upon the matching
pursuit algorithm [37]. The algorithm is stated in Figure 1.

Fig. 1 Orthogonal Matching Pursuit
1. Initialize k=0,1°=0,/° =y¢,x°=0
2. While ||rg|| > € do:
a. Increase k and select an atom by iy € argsup{|(rk_l ,di)] ‘d,- € ,@},
b. Set I* = I*"1 U {i;} and project x onto span&’(I¥), ie. ¥t = argmin {||v* — KﬁH2|17 €
spané"(l")},
c. Setrf:=y¢ — K.

Necessary and sufficient conditions for exact support recovery by OMP are given
in [46]. Next, we list this result in the language of infinite-dimensional inverse prob-
lems. We define the linear continuous synthesis operator for the dictionary Z via

D: ' -Y,DB = ‘ZZBidi = Z,Zﬁ,HIE—ZH Furthermore, for J C Z we denote with
IS 1<

Py : ¢' — ¢! the projection onto J and with AT the pseudoinverse of an operator A.
With this notation we state the following theorem.

Theorem 1 (Tropp [46]). Let o € 0 with supp @ = I, x = Y ;c7 Oe; be the source
and y = Kx the measured signal. If the operator K : X — Y and the dictionary
& = {e;}icy fulfill the Exact Recovery Condition (ERC)

sup |[(DP)d| 1 < 1, (1)
de(ib)

then OMP with its parameter € set to 0 recovers o exactly.

The necessity of the condition (1) is shown in [46], by constructing a signal such
that for > 1 in (1), OMP fails to recover it.

A weaker sufficient condition is derives by Dossal and Mallat [21] and Gribonval
and Nielsen [28] and this condition only depends on inner products of the dictionary
atoms of Z(I) and @(IE) only and hence, is simpler to evaluate (although the con-
dition is not necessary).

Proposition 1 (Dossal and Mallat [21], Gribonval and Nielsen [28]). Let o € £
with suppa = I,. If the operator K : X — Y and the dictionary & = {e;}icz fulfill
the Neumann ERC

sup Y [(di,dj)|+sup Y [(didj)| <1, )
i€l jel, j£i ielt jel

then OMP with its parameter € set to 0 recovers o.



Sparsity and Compressed Sensing in Inverse Problems 5

The transfer to noisy signals y* = y+1n = Kx+n with [y —Vv¥|| = ||n|| < &
(where OMP has to stop as soon as € > ||7*||) is contained in the following theorem
from [17].

Theorem 2 (ERC in the Presence of Noise). Let oo € (0 with supp o = I. Let x =
Yic7 a;e; be the source and y¢ = Kx+ 1 the noisy data with noise level ||n|| < €
and noise-to-signal-ratio

sup|(n,d;)]
r - icZ
€% min ||| Kei]|
iel

If the operator K and the dictionary & fulfill the Exact Recovery Condition in Pres-
ence of Noise (¢€ERC)

1
sup [|(DP)'d || <1=2rg/q : A3)
y 1—su d;,d;
dea(I) i;jg;jﬁ\(: )

andsup Y. |(di,d;)| <1, then OMP recovers the support I of o exactly.
i€l jel, j#i

To ensure the €ERC (3) one has necessarily for the noise-to-signal-ratio r¢ /o <
1/2. A rough upper bound for sup;.z |(1,d;)| is € and hence, one may use rg/o <
&/ (min|og||[Kei]).

Similarly to the result of Dossal and Mallat, one can give a weaker sufficient
recovery condition that depends on inner products of the dictionary atoms. It is
proved analogously to proposition 1 (see [17]).

Proposition 2 (Neumann ERC in the Presence of Noise). If the operator K and
the dictionary & fulfill the Neumann eERC

sup Z |<di,dj>|+sup2|<d;,dj)|<1—2r8/a, @
i€l jeI, j#i iclC jel
then OMP recovers the support I of o exactly.
Theorem 2 and proposition 2 ensure that the correct support / is identified and

the following proposition additionally shows that the reconstruction error is of the
order of the noise level.

Proposition 3 (Error bounds for OMP in presence of noise). If the eERC is ful-
filled then there exists a constant C > 0 such that for the approximative solution O
determined by OMP it holds that |0 — |y < Ce.

The proof can also be found in [17]
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2.2 ('-minimization

In ¢'-minimization one promotes sparsity of the approximate solution of Kx = y¢

by a sparsity constraint. In this section we assume that x itself is the object which
is sparse, i.e. x € £2 with |suppx| = N < co. A typical sparsity constraint is given by
the ¢!-norm and hence, we investigate the minimization problem

mxin{T;L(x) = 3 [[Kx—y*|* + A lx]| }

This method is also called Basis Pursuit Denoising [13].

In [34, 27] it has been shown that ¢! minimization is indeed a regularization
method and also an error estimate have been derived. A central ingredient is the so-
called Finite Basis Injectivity property (FBI-property) of the operator K introduced
in [7]. An operator K has the FBI property if for all finite subsets J C Z the operator
K restricted to span{e;|i € J} is injective, (in other words, for all x,z € ¢ with
Kx =Kz and x; = z;, = 0, for all k ¢ J, it follows that x = z). Note that the FBI
property can be seen as a variant of the restricted isometry property (introduced in
the next section).

Theorem 3 (Error estimate). Ler K possess the FBI property, x be sparse with
suppx = I be a minimum-|| - || 1 solution of Kx =y, and ||y — y°|| < €. Let the fol-
lowing source condition (SC) be fulfilled:

there exists w € Y such that K*w = & € Sign(x). %)

Moreover, let © = sup{|&]|||&| < 1} and ¢ > O such that for all z € €* with
supp(z) C I it holds ||Ku|| > c||u||. Then for the minimizers x*€ of Ty, it holds

e IK||+1¢ (1 |\K||+1)
€ _xlla < A .
e g < e (L KD e 6
Especially, with A < € it holds
™€ x|l = O(e). (7

In addition to the above error estimate one can give an a priori parameter rule
which ensures that the unknown support of the sparse solution x € #° is recovered
exactly (cf. [35]).

Theorem 4 (Lower bound on &). Let x € (°, supp(x) = I, and y¢ = Kx+1 the noisy
data. Assume that K is bounded and possesses the FBI property. If the following
condition holds,
sup||(KPy) Keil|n <1, ®)
iel

then the parameter rule
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1+ sup, e | (KP) Keil|
el ——— sup|(n,Ke;)| )
1 —sup, ;¢ [(KPr) Keill o icz

ensures that the support of x*€ is contained in I.

Theorem 4 gives a lower bound on the regularization parameter A to ensure
supp(x*€) C supp(x). To even guarantee supp(x*€) = supp(x) we need an addi-
tional upper bound for A. The following theorem from [35] leads to that purpose.

Theorem 5 (Error estimate). Let the assumptions of theorem 4 hold and choose A
according to (9). Then the following error estimate is valid:

e < (3+-supl(n. Kea)) [Pk KB) ™ . (10)
ic

Remark 1. Due to the error estimate (10) we achieve a linear convergence rate mea-
sured in the /% norm. In finite dimensions all #” norms are equivalent, hence we also
get an estimate for the ¢! error:

A, -1
[lx = x| < (A + el KI) 1] | (PK"KP) ™ g -

Compared to the estimate (6) from theorem 3, the quantities 6 and ||w|| are not
present anymore. The role of 1/c is now played by ||(PK*KP;) ™" (|1 y1. However,
if upper bounds on [ or on its size (together with structural information on K) is
available, the estimate can give a-priori checkable error estimates.

Theorem 6 (Exact recovery condition in the presence of noise). Let x € 20 with
supp(x) = I and y¢* = Kx+ 1 the noisy data with noise-to-signal ratio

sup (1, Ke)|
i€z
min |x;]|
iel

rn/u —

Assume that the operator K is bounded and possesses the FBI property. Then the
exact recovery condition in the presence of noise (€ERC)

sulg||(KP1)TKei||[1 <1=2r0 1| (PK*KP) | g (11)
iel

ensures that there is a suitable regularization parameter A,

1+sup,_ ¢ |[(KP) Ke;i|| 1
Piett I ’)T e sup [(1,Ke;)| < A (12)
1 —sup, [(KP) Keillp icz

min [u}
A< = —sup|(n,Ke;)l,
[(PIK*KP) " o o0 ez '

which provides exact recovery of I.
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3 Compressive sensing principles for ill-posed problems

Within this section we combine the concepts of compressive sensing and sparse
recovery for solving inverse and ill-posed problems. To establish an adequate mea-
surement model, we adapt an infinite dimensional compressed sensing setup that
was invented in [22]. As the main result we provide recovery accuracy estimates
for the computed sparse approximations in the language of [11] but now for the
solution of the underlying inverse problem. One essential difference to the classi-
cal compressed sensing framework is the incorporation of joint sparsity measures
allowing the treatment of infinite dimensional reconstruction spaces. Moreover, to
tackle ill-posed operator equations we rely on constrained optimization formulations
that are very close to elastic net type optimizations.

3.1 Compressive sensing model and classical results

Within this section we provide the standard reconstruction space, the compressive
sensing model and repeat classical recovery results for finite-dimensional problems
that can be established thanks to the restricted isometry property of the underlying
sensing matrix.

Let X be a separable Hilbert space and X, C X the (possibly infinite dimensional)
reconstruction space defined by

(=11€A

Xin = {x eX,x=Y Y dian, de (42(/\))"1},

where we assume that A is a countable index set and &, = {aww {=1,....m,A €
A} forms a frame for X,, with frame bounds 0 < Cg, < C®* < co. Note that
the reconstruction space X, is a subspace of X with possibly large m. Typi-
cally we consider functions of the form a,; = a;(- —A.7), for some .7 > 0.
With respect to &, we define the map F, : X, — (£2(A))™ through x — Fx =
({{x,a1 ) aens- - {(x.ama)}rea)’. Fu is the analysis operator and its adjoint,
given by F : ({2(A))" — X, through d — Fyd =Y.' | Ypcadypag ;. is the so-
called synthesis operator. Since @, forms a frame, each x € X,,, can be reconstructed
from its moments F,x through (F;F,)~'F;. A special choice of analysis/sampling
functions might relax the situation a bit. Assume we have another family of sam-
pling functions @, at our disposal fulfilling F,F,} = I, then it follows with x = F}d

{(x,via)trea {(F;d,via)}ren
y=Fx= : - : —FF'd=d, (13)
{(x,vma)trea {(Fid,vips)}rea
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i.e. the sensed values y equal d and therefore x = F; F,x. The condition F,F; =1
means nothing else than (a; 3, vy 3/) = Sy 8y forall L,A’ € Aand 0,0’ =1,...,m,
i.e. @, and P, are biorthogonal to each other.

As we focus on reconstructing functions (or solutions of operator equations) x
that have a sparse series expansion x = F,'d with respect to @,, i.e. the series ex-
pansion of x has only a very small number of non-vanishing coefficients d; ; , or that
x is compressible (meaning that x can be well-approximated by a sparse series ex-
pansion), the theory of compressed sensing suggests to sample x at much lower rate
as done in the classical setting mentioned above (there it was m/.7) while ensuring
exact recovery of x (or recovery with overwhelming probability). The compressive
sampling idea applied to the sensing situation (13) goes now as follows. Assume we
are given a sensing matrix A € RP*" with p < m. Then we construct p species of
sampling functions through

S1,A V1,4
=A| - forall A € A . (14)
Sp.A Vi,
As a simple consequence of (14), the following lemma holds true.

Lemma 1. Assume for all & € A the sampling functions s, j,,...,s, ; are chosen as
in (14) and let y denote the exactly sensed data. If @, and D, are biorthogonal to
each other, then y = Ad.

Letd, denote the m-dimensional vector (d; 3 ,...,d,, ;)" andy;, the p-dimensional
vector (1 4,...,y P, 2)7, then Lemma 1 states that for each A € A the measurement
vectors are given by y, = Ad, . It has been shown in [12], that for each individual
A € A the solution dj to

min ||d, ||, subjectto y, =Ad, , (15)
dAERm

recovers d; exactly provided that d; is sufficiently sparse and the matrix A obeys a
condition known as the restricted isometry property.

Definition 1 (restricted isometry property). For each integer k = 1,2,... , define
the isometry constant & of a sensing matrix A as the smallest number such that

(1= ) IxlI7, < llAxZ, < (1+&0)|IxlI7, (16)

holds for all k-sparse vectors x. A vector is said to be k-sparse if it has at most &
non-vanishing entries.

Theorem 7 (noiseless recovery, Candes [11]). Assume 8 < /2 — 1. Then for each
A € A the solution d; to (15) obeys

Il —dlle, < Colld), —dalle, a7
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ld; —dylle, < Cok™"/2|dk —dy ||, (18)

or some constant Cy (that can be explicitly computed) and d* denoting the best
plicitly comp 3 g
k-term approximation. If dj, is k-sparse, the recovery is exact.

This result can be extended to the more realistic scenario in which the measurements
are contaminated by noise. Then we have to solve

min [|d; ||, subjectto |[yd —Ad; |, <& . (19)
dAERm

Theorem 8 (noisy recovery, Candes [11)]). Assume 8, < \/2—1 and ||y?L —yalle, <
0. Then for each A € A the solution dj to (19) obeys

ld; —dylle, < Cok™" 2 ldf —dple, +C1 (20)

with the same constant Cy as before and some C (that can be explicitly computed).

3.2 Infinite dimensional regime and joint sparsity measures

In the previous subsection we have summarized results that apply for all individual
sensing scenarios, i.e. that hold true for all individual A € A. But as the index set
A is possibly of infinite cardinality, we are faced with the problem of recovering in-
finitely many unknown vectors d; for which the (essential) support can be different.
Therefore, the determination of d by solving for each A an individual optimization
problem is numerically not feasible.

For a simultaneous treatment of all individual optimization problems, we have
to restrict the set of all possible solutions dj . One quite natural restriction is that
all d; share a joint sparsity pattern. Introducing support sets . C {1,...,m}, the
reconstruction space is given through

X = {xEX,x: Y Y dija, de(@z(A))’"} , 1)

le S |I|=kreA

i.e. only k out of m sequences {dy 5 },c4 do not vanish. The space X is no longer
a subspace since two different x might correspond to two different support sets .#
and therefore its sum is not contained in X;. The space X; can be seen as a union of
(shift invariant) subspaces.

To solve the recovery problem we propose a constrained optimization approach.
Let therefore the linear sensing operator T be given by T : (¢2(A))" — (£2(A))? via
Td = T({di 2 bacas- - Admataca)” = ({(Ady) Yacnr- .- {(Ady)"}2en)T. For
the purpose of identifying the support set .# we restrict the minimization of
|ly® — Td||%£2(A>),, to the sub-domain
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B(¥2.R) = {d € ((A)": ¥i2(d) <R},

1

r) %) q
This measure forces the solution d for reasonably small chosen g (e.g. 1 < g < 2)
to have non-vanishing rows {dy; }aea only if [[{ds 2 }realls(a) is large enough.
Consequently, the optimization reads then as

where ¥, , is a joint sparsity measure defined by ¥, ,(d) = (Z’lf’zl (Xaealde

. 5 2
—Td p s 22
deBIgl‘Il’lr,lzﬁR) Iy HMZ(A))I ~

where the minimizing element in B("¥; 2, R) can be approached by
= (an+ %T*(ﬁ —Tdn) (23)

where y > 0 is a step-length control (determined below) and & is the ¢>-projection
on B(¥i2,R), which can be realized by the sequence-valued generalized soft-
shrinkage operator. To control the speed of convergence we introduce conditions
on 7y.

Definition 2. We say that the sequence {y" },,cn satisfies Condition (B) with respect
to the sequence {d" },,cn if there exists ng such that:

(B1) sup{yn€eN} <eo and inf{y";neN}>1
(B2) PITd™ ~Td" |2, 00 < Cld™ =[Py pypm V=m0

Proposition 4. If for arbitrarily chosen d° assume d"*' is given by

" = (d" + %T*(y‘s - Td”)> : (24)

with y* satisfying Condition (B) with respect to {d" },cn, the sequence of residuals
ly® — Td"||%[2(/\))p is monotonically decreasing and {d"},en converges in norm
towards d*, where d* fulfills the necessary condition for a minimum of (22).

3.3 Compressive sensing and recovery for ill-posed problems

The objective in the sensing scenario for ill-posed problems is again to recover x, but
now we only have access to Kx and K is supposed to be a linear (possibly ill-posed)
and bounded operator between Hilbert spaces X and Y.

The data y are obtained by sensing Kx through F; : Y — (¢,(A))?,i.e. y=F,Kx =
F,KF;d. Similarly to Lemma 1, we have the following result.

Lemma 2. Assume for all 2. € A the sampling functions s, j.,...,s, ; are chosen as
in (14). Then y = AFg+,F;d = AF, F¢ d.
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An ideal choice to guarantee recovery within the compressive sampling framework
would be to ensure Fx+,F; = F,F¢, = Id. For normalized systems @, and ¢, and
ill-posed operators K this is impossible to achieve. The simplest case is that we
have systems @, and @, at our disposal that diagonalize K, i.e. (Kay ,vp 1) =
Ky, 0373, 6¢7¢. One prominent example is the so-called wavelet-vaguelette decompo-
sition with respect to K. If &, and &, diagonalize K, then the structure of the sensing
operator is 7D : (£2(A))™ — (£2(A))?, where (TD)({dya}aen,---{dmatrea) =
({(ADy.d3) Yacns-- -, {(AD3dy)P}5cn ), and D is defined by A-dependant blocks
D, of size m x m, D), = diag(x; 3,K2,---,Kpn1)-

Let us first consider the sensing problems for each individual label A (which are
m-dimensional recovery problems),

Yo =ADyd; +z;, with |73 < §. (25)

Since K is ill-posed, the sensing matrix AD; obeys no longer the restricted isometry
property. Therefore, we propose to minimize the stabilized constrained optimization
problem
: 5 2 2
min —AD,d +a|d 26

Lmin 3 —ADads [, + el |, 6)
where B({1,R) = {d) € (> : ||d3||¢, < R}. Let us define L? := D3 A*AD, + al, if A
fulfills the restricted isometry property (16), then the operator L obeys a restricted
isometry condition of the following form,

(onin(1 = 86) + @) |2 |17, < L [I7, < (e (14 8) + )| |7, , 27

for all k-sparse vectors d; and where k., denotes the largest and k,;, the smallest
eigenvalue of D, .

Theorem 9 (finite dimensions). Assume R is such that d;, & B(¢,,R) and that

(1 + ﬁ) Kr%tin — Kr?zax + \/EOC

0<ox<
(1 + \/j) Kr121in + Kr%zax

(28)

Then the minimizer d;‘L of (26) satisfies
ld; = dalle, < Cok™"2||d5 —dy ||, +C1|IL(d] —dy)lle, + ©:8 + C3v/aR , (29)

where d; is the B({1,R)-best approximate solution, dﬁ the best k-term approxima-
tion, and where the constants Cy, C1, C>, and C3 are given explicitly.

As (28) serves as a condition for &, and o at the same time, it turns out that the
choice of & influences the choice of a suitable sensing matrix A and vice versa.
Let us now investigate the full infinite dimensional measurement model,

y6 = (TD)d 4z with ||Z||(g2(/\))m <9d.

We propose to solve the following optimization problem,
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. 5 2 2
s ¥ = (TD)A|[7y, (ayyr + Iy pyym - (30)

For the minimizing element the following error estimate hold true.

Theorem 10 (infinite dimensions). Assume R is such that d ¢ B(¥ 2,R) and 8y is
as in Theorem 9. Then the minimizer d* of (30) satisfies

[d* —d|| 1,y < Cok™ 2 o(d* — d) +C1||L(d" — d)|| 4y (a )y + C28 +C3V/aR .

The minimizing elements can be iteratively approximated by

n * n a n
= (D;LA o3 —AD,ldl)% + (1 — Cyn) d,l>

for problem (26) and for the full infinite dimensional case by

n+1 __ sk 0 nﬁ _L’yn n
d _@<DT(y TDd)C+(1 C)d).

The norm convergence is ensured by Proposition 4.
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