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Abstract

We set up a new general coorbit space theory for reproducing representations of a locally
compact second countable group G that are not necessarily irreducible nor integrable. Our
basic assumption is that the kernel associated with the voice transform belongs to a Fréchet
space T of functions on G, which generalizes the classical choice T = L1

w(G). Our basic
example is T =

⋂
p∈(1,+∞) Lp(G), or a weighted versions of it. By means of this choice it

is possible to treat, for instance, Paley-Wiener spaces and coorbit spaces related to Shannon
wavelets and Schrödingerlets.

Keywords: Coorbit spaces, Fréchet spaces, Representations of Locally Compact Groups, Re-
producing Formulae

1 Introduction

One of the central problems in applied mathematics is the analysis of signals. Usually signals are
modelled by functions in suitable functions spaces (e.g., L2 or Sobolev spaces) and they might be
given explicitly or implicitly as the solution of an operator equation. In most applications, the
signal is transformed via a mapping into a suitable parameter space where it is easier to extract
the information of interest. By discretization, one obtains suitable building blocks that give rise
to a discrete representation of the signal and can be used to decompose, compress and process
the signal. Over the years, many different transforms have been derived in response to particular
problems, including the wavelet and Gabor transforms. Representation theory, however, gives a
general approach to construct continuous transforms for L2-functions, and coorbit space theory
allows both to extend these transforms to more general function spaces and to provide discrete
systems. Indeed, it was shown that virtually all well-known transforms used in signal analysis
can be derived from this general setting. In this sense, coorbit space theory serves as a common
thread in the jungle of all possible signal transformations. Nevertheless, as will be explained below,
the classical coorbit space setting relies on specific assumptions that might be hard to verify in
practice. The purpose of this paper is to investigate how to weaken these basic assumptions with
the goal of extending the applicability of this framework to a much larger class of problems.

Coorbit space theory was originally introduced by H. Feichtinger and K. Gröchenig in a series
of papers in 1988-89 [1, 2, 3, 4]. By means of this theory, given a square integrable representation,
it is possible to construct in an efficient and systematic way a full scale of smoothness spaces where
the smoothness of a function is measured by the decay of the so-called voice transform. For any
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unitary representation π of a locally compact topological group G on a Hilbert space H and a
fixed u ∈ H, the voice transform V is the map assigning to v ∈ H the corresponding transform
x 7→ V v(x) = 〈v, π(x)u〉 as x ranges in G. Evidently, V v is a function on the group. Since H
is often a Hilbert space of functions, the voice transform connects two function spaces, that is, it
maps signals to functions on the group.

Coorbit space theory has been very successful in many ways and has given rise to a wealth of
results, enabling to derive a very large family of smoothness spaces as coorbit spaces, including
both classical functions spaces and new ones. In particular, the classical Besov spaces are derived
as coorbit spaces where smoothness is measured by the decay of the wavelet transform, i.e., the
voice transform associated with the affine group. Similarly, the well-established class of modulation
spaces corresponds to the family of coorbit spaces where smoothness is measured by the decay of the
Gabor transform, i.e., the voice transform associated with the Weyl-Heisenberg group (cf. [1, 2, 3,
5, 6]). As another example, let us mentions the α–modulation spaces [7] which can be interpreted
as coorbit spaces related to group representations modulo quotients [8]. Another advantage of
coorbit space theory is to provide atomic decompositions and Banach frames for the coorbit spaces,
through a procedure which generates discrete function systems by discretization of the group
representation. This is important since it provides a way to understand the properties of discrete
signal representations through the group theoretic properties of their corresponding continuous
voice transforms.

In recent years, a new generation of multiscale transforms has emerged in applied harmonic
analysis, such as the shearlet and curvelet transforms, which were introduced to overcome the
limitations of the traditional multiscale framework in multi-dimensional setting with high efficiency
[9, 10]. Recent results have shown that the continuous shearlet transform, in particular, stems
from a square integrable group representation of the so-called full shearlet group [11, 12, 13]. By
applying the coorbit space theory to this setup, it is possible to define some useful anisotropic
smoothness spaces via the decay properties of the shearlet transform and to relate these spaces
to other well-known function spaces [14, 15, 16, 17]. This has stimulated the investigation of a
larger class of group representations, primarily those arising from the restriction of the metaplectic
representation to a class of triangular subgroups of the symplectic group [18]. This class includes
many known cases of interest in signal analysis and gives rise to several new examples, such as the
Schrödingerlets that we discuss in this paper. Yet another potential extension of this framework is
the general context of the so-called mock metaplectic representations, introduced in [19]. However,
the classical coorbit space theory appears to be too restrictive to deal with this more general class
of group representations and the corresponding voice transforms and function spaces.

Let us recall that the classical coorbit space theory à la Feichtinger-Gröchenig makes the fol-
lowing two assumptions:
(FG1) The kernel K = V u, that is, the voice transform of the admissible vector itself, is an abso-
lutely integrable function on the group1.
(FG2) The representation is assumed to be irreducible.
A major part of this paper is concerned with replacing (FG1) by some weaker condition. The
fundamental concepts will be presented in Sections 2 and 3. First of all, let us mention that the
problem of removing the integrability condition has already been addressed by J. Christensen and
G. Ólafsson in [20, 21]. Classically, the reservoir of test functions is obtained by taking the func-
tions whose voice transform is in L1(G), hence it is a Banach space in a natural way. In the papers
[20, 21], the reservoir is a fixed Fréchet space S densely embedded into H. The basic example is
the set of C∞ vectors for the representation. The approach that we consider in this paper is indeed
similar to [21], but features an important new datum that we call the target space T . This is a
Fréchet space of functions on G and plays the role of L1(G) in the classical setup. In our theory,
the reservoir S is the set of functions whose voice transform is in T . In Section 4, we provide a

1For simplicity, in this introduction we use unweighted versions of Lp(G).
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new model for the target space, namely

T =
⋂
p>1

Lp(G). (1)

For this choice we are able to produce concrete cases arising from triangular subgroups of Sp(2,R),
notably the case of the so-called Schrödingerlets, discussed in Section 4.3. As a toy example, in
Section 4.2 we also consider the case of the band-limited functions2.

As for assumption (FG2), most of the classical coorbit space theory can be carried out also
in the reducible case. In the irreducible case, it is possible to show that the construction of the
coorbit spaces is independent of the choice of the admissible vector. Exactly this property is lost
in the reducible case, as showed by an important example in [22]. Neither in [21] nor in our setting
irreducibility is needed. In Section 3.3 we give a reasonable description of admissible vectors leading
to the same coorbit spaces. Finally, in Section 5 we present a detailed account of the extent to
which the classical L1 theory can be developed without the assumption of irreducibility.

Let us briefly describe in some detail the main features of our approach. The starting ingredients
are a unitary reproducing representation π of a locally compact second countable group G on a
separable Hilbert space H and an admissible vector u ∈ H. Next, the Fréchet spaces S and T come
into play, and their roles in the theory can be described by the following very basic conceptual
picture

S i−−−−→ HyV
T j−−−−→ L0(G)

where L0(G) denotes the space of measurable functions on G. Thus, S and T are Fréchet spaces
that embed into H and L0(G), respectively, and should therefore be thought of as signals and
functions on the group, respectively. The space T is a free choice, as long as one can embed it
continuously into L0(G) in such a way that some basic properties are satisfied (Assumptions 1 and
2). The space S will serve as the reservoir of test functions and it is defined as the subset of H
consisting of those vectors whose voice transform belongs to j(T ). Test functions are modeled in
terms of their voice transforms and the latter ones constitute the true degree of freedom in the
construction, the target space T .

Once the basic structures are laid out, one then follows the lines of coorbit space theory and
defines first the distributions S ′ and then coorbits associated to Banach spaces of functions.

Technically speaking, our theory is determined by the data set (G,H, π, u, T , Y ), where:

• G is a locally compact second countable topological group;

• H is a separable Hilbert space;

• π is a continuous unitary reproducing representation of G on H;

• u ∈ H is an admissible vector;

• T is a Fréchet space continuously embedded via j into L0(G);

• Y is a Banach space continuously embedded in L0(G) and left invariant.

2Notice that the sinc function is in every Lp with p > 1 but not in L1.
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The main ancillary objects attached to them are:

• the voice transform V2 : H → L2(G);

• the reproducing kernel K = V2u;

• the reproducing kernel space M = {f ∈ L0(G) | f ∗K = f};

• the space of test functions S = {v ∈ H | V2v ∈ j(T )};

• the space of distributions S ′;

• the extended voice transform Ve : S ′ → C(G);

• the coorbit space Co(Y ) = {T ∈ S ′ | VeT ∈ Y }.

These data are assumed to satisfy several assumptions that are made both for the target space T
and for the model space Y . Assumption 1 asks that the kernel K is in T , which substitutes the
classical integrability condition K ∈ L1(G), and that Kf ∈ L1(G) whenever f ∈ T . This second
requirement has a twin version for Y , namely Assumption 5, and it is trivially satisfied in the case
T = L1(G) because K is bounded. Assumption 2 and Assumption 6 ask that the product of any
voice transform and any “good” function in T ∩M (or in Y ∩M) is in L1(G).

Assumption 3 ensures that the extended voice transform is injective. This is a necessary con-
dition to reconstruct a distribution from its voice transform. Finally, Assumption 4 requires that
the reproducing formula extends to all distributions. In particular, we prove in Proposition 3.3
that Assumption 4 holds true if T is reflexive and VeS ′ ⊂ T ′.

Our theory is succesful in the sense that: it provides a workable substitute for the classical
integrability condition K ∈ L1(G); it contains the classical coorbit space theory even for non
irreducible representations; it applies to several interesting examples; it is consistent with the
recent theory developed in [20, 23].

2 Fréchet spaces of functions

In this section, we recall some properties of the Fréchet spaces that are relevant to the main objects
of our theory, namely the target space T and the space S of test signals that will be defined in the
next section. We introduce abstract spaces E and F . The space E must be interpreted as modeling
a subspace of the Hilbert space H, hence of signals, but possibly with a different topology. Its
properties will be used primarily for the test space S, but also for H itself. Similarly, the space
F should be thought of as an abstract model of a Fréchet space of functions on the group. The
results proved for F will be primarily applied to the target space T , which in many examples is a
genuine Fréchet space but not a Banach space, but will also be useful for F = L1(G), F = L2(G)
and, most notably, for F = Y , the space of functions used to define coorbit spaces. From this point
of view, our theory indicates that it is possible to develop a useful coorbit space theory assuming
that Y is a Fréchet space rather than the more common choice of a Banach space. This further
extension, however, is beyond the scope of this article, and we content ourselves with the classical
case in which Y is Banach space.
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2.1 Background

We now introduce the basic notation and recall some elementary properties. Further technical
results are recalled in Section 6.1.

Throughout this paper, G, denotes a fixed locally compact second countable group with a left
Haar measure β and ∆ is its modular function. We write

∫
G
f(x)dx instead of

∫
G
f(x) dβ(x) and

denote the classical spaces of complex functions on G as follows:

L0(G) β-measurable functions,
Lp(G) p-integrable functions with respect to β, p ∈ [1,+∞),
L∞(G) β-essentially bounded functions,
L1

loc(G) locally β-integrable functions,
C(G) continuous functions,
C0(G) continuous functions going to zero at infinity,
Cc(G) compactly supported continuous functions.

The space L0(G) is a metrizable complete topological vector space with respect to the topology of
convergence in measure (see Section 6.1). The norm of f ∈ Lp(G) and the scalar product between
f, g ∈ L2(G) are denoted by ‖f‖p and 〈f, g〉2, respectively. The space L1

loc(G) is a Fréchet space
with respect to the topology defined by the family of semi-norms

f 7→
∫
K
|f(x)|dx,

where K runs over the compact subsets of G (see Section 6.1).

We denote by λ and ρ the left and right regular representations of G on L0(G), namely

λ(x)f (y) = f(x−1y)
ρ(x)f (y) = f(yx)

for all x ∈ G, all f ∈ L0(G) and almost all y ∈ G. Both λ and ρ leave L1
loc(G) and each Lp(G)

invariant, and λ is equicontinuous both on L1
loc(G) and on each Lp(G). In Section 6.2 we recall

the main properties of the representations acting on Fréchet spaces. For general background on
representations the reader is referred to [24].

For all f ∈ L0(G) we denote by f̌ the element in L0(G) given by

f̌(x) = f(x−1)

for almost all x ∈ G (see Section 6.1). Given two functions f, g ∈ L0(G), we say that the convolution
f ∗ g exists if for almost all x ∈ G the function fλ(x)ǧ is in L1(G). We write

f ∗ g(x) =
∫
G

f(y)λ(x)ǧ(y) dy =
∫
G

f(y)g(y−1x) dy a.e. x ∈ G

and we have that f ∗ g ∈ L0(G) (see Section 6.3).

2.2 Voice transform

In what follows, π denotes a fixed strongly continuous unitary representation of G acting on the
separable Hilbert space H and u a fixed vector in H. We stress that π is not assumed to be
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irreducible, nor, at this stage, reproducing. As it is customary, the voice transform associated to
the these data is the map

V : H → L∞(G) ∩ C(G), V v(x) = 〈v, π(x)u〉H.

It intertwines π and λ, that is
V π(x) = λ(x)V (2)

for all x ∈ G. The corresponding kernel is given by

K : G→ C, K(x) = V u(x) = 〈u, π(x)u〉H. (3)

It enjoys the basic symmetry property
K = Ǩ. (4)

For all f ∈ L1(G) the Fourier transform π(f) is the bounded operator on H defined by

〈π(f)w, v〉H =
∫
G

f(x)〈π(x)w, v〉H dx

for all w, v ∈ H. Note that, with the choice w = u, we get

〈π(f)u, v〉H =
∫
G

f(x)V v(x) dx. (5)

2.3 Functions on the group

In this section, we consider a space F of functions on G and we study the properties of the
convolution operator f 7→ f ∗K from F into C(G). In particular, we introduce the subspace MF

of those functions which are left fixed by the convolution operator. In the theory of reproducing
representations, F is the Hilbert space L2(G); in the theory developed by H. Feichtinger and K.
Gröchenig it is a weighted version of L1(G); in our setting it is the target space T .

We assume that F is a Fréchet space with a continuous embedding j : F → L0(G). With slight
abuse of notation, given f ∈ F , we denote by f(·) a β-measurable function such that for almost
every x ∈ G, f(x) = j(f)(x). Further, we assume that there exist

[i)]a continuous involution f 7→ f on F such that j(f) = j(f) (so that f(x) = f(x)); a
continuous representation ` of G acting on F for which

j(`(x)f) = λ(x)j(f) f ∈ F, x ∈ G,

so that (`(x)f)(y) = f(x−1y) and `(x)f = `(x)f .

Standard examples of spaces satisfying the above assumptions are the Lp-spaces or their weighted
versions. Other important examples are the space of C∞ functions, if G is a Lie group, or the
space of rapidly decreasing functions, whenever this notion makes sense.

The space j(F ) is a subspace of L0(G), stable under complex conjugation and λ-invariant.
Clearly, we could identify F with j(F ) avoiding the cumbersome map j. However, we want to
stress that F has its own topology, which is not necessarily the topology of j(F ), that is, the
relative topology as a topological subspace of L0(G). In order to clarify the role of the two
topologies, we shall not identify F with j(F ).

Since j is continuous from F into L0(G), for any sequence (fn) converging to an element f in
F , there exists a subsequence (fnk)k such that (fnk(x))k converges to f(x) for almost all x ∈ G
(see (72) for details).
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We denote by F ′ the topological dual of F . For each T ∈ F ′, the map f 7→ T (f) defines a
continuous anti-linear function on F , which we denote by 〈T, ·〉F . The map T 7→ 〈T, ·〉F is a linear
isomorphism of F ′ onto the anti-dual F∧, the space of anti-linear continuous forms on F . In what
follows, we identify F∧ with F ′. Observe that the map (T, f) 7→ 〈T, f〉F is a sequilinear form on
F ′ × F , linear in the first entry and anti-linear in the second.

The Köthe dual of F is defined by

F# = {g ∈ L0(G) | gj(f) ∈ L1(G), for all f ∈ F}.

It is closed under complex conjugation and its elements can be regarded as anti-linear forms on
F , as shown by the next lemma. Here and below, we fix a countable fundamental system {qi}i of
saturated3 semi-norms in F .

Lemma 2.1. Given g ∈ F#, the map

F 3 f 7→ 〈g, f〉F =
∫
G

g(x)f(x) dx ∈ C (6)

is a continuous anti-linear form, that is, an element of F ′, which we denote again by g. The
representation λ leaves F# invariant and for all x ∈ G

〈λ(x)g, f〉F = 〈g, `(x−1)f〉F . (7)

Finally, there exist a constant C > 0 and a semi-norm qk in the fundamental saturated family
{qi}i such that for all f ∈ F ∫

G

|f(x)||g(x)| dx ≤ Cqk(f). (8)

1.2. Proof. By definition, for each f ∈ F the function g j(f) is in L1(G). We claim that the linear map

L : F → L1(G), Lf = g j(f)

is continuous. Since both F and L1(G) are separable metrizable vector spaces, by the closed
graph theorem (Corollary 5 of Chapter I.3.3 of [25]) it is enough to show that the graph of L is
sequentially closed in F × L1(G). Take a sequence (fn)n in F converging to f in F and such that
(Lfn)n converges to ϕ in L1(G). Since both F and L1(G) are continuously embedded in L0(G),
possibly passing to a subsequence, we can assume that both (fn(x))n and (Lfn(x))n converge to
f(x) and ϕ(x), respectively, for almost every x. Hence for almost all x ∈ G

Lf (x) = g(x)f(x) = lim
n→+∞

g(x)fn(x) = lim
n→+∞

Lfn(x) = ϕ(x),

that is, Lf = ϕ in L1(G). Hence L is continuous, as well as the anti-linear form

f 7→
∫
G

Lf(x)dx =
∫
G

g(x)f(x) dx = 〈g, f〉F .

We now prove that λ leaves F# invariant. Indeed, given x ∈ G and f ∈ F∫
G

|λ(x)g (y)f(y)|dy =
∫
G

|g(x−1y)f(y)|dy =
∫
G

|g(y)f(xy)|dy =
∫
G

|g(y)`(x−1)f (y)|dy < +∞,

where the last integral is finite since `(x−1)f ∈ F . Hence λ(x)g ∈ F#. The same string of equalities
gives (7). Finally, the last formula follows directly from the continuity of L.

3A family is saturated if the maximum of any finite subset is in the family.
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In general, F# is a proper subset of F ′ as the following example clarifies. Take F = Lp(G) with
p ∈ [1,+∞]. Then Lp(G)# = Lp

′
(G), where p′ is the dual exponent of p, so that Lp(G)# = Lp(G)′

for all p < +∞, but of course L∞(G)# = L1(G) ( L∞(G)′.

The next proposition shows that, if the kernel K belongs to the Köthe dual of F , then for all
f ∈ F the convolution j(f) ∗K exists. Furthermore, we introduce the subspace MF ⊂ F whose
elements are those reproduced by convolution with K on the right. In the following statement
C(G) is endowed with the topology of the compact4 convergence.

Proposition 2.2. Assume that K ∈ F#. Then:
[a)]for all f ∈ F , j(f) ∗K exists everywhere, it is a continuous function and, for all x ∈ G,

j(f) ∗K(x) = 〈λ(x)Ǩ, f〉F = 〈Ǩ, `(x−1)f〉F ; (9)

the map f 7→ j(f) ∗K is continuous from F to C(G); the set

MF = {f ∈ F | j(f) ∗K = j(f)} (10)

is an `-invariant closed subspace of F , and therefore it is a Fréchet space respect to the
relative topology.

1.2.3. Proof. Notice that, in view of (4), K ∈ F# if and only if Ǩ ∈ F#. Since λ leaves F# invariant
(Lemma 2.1), for all x ∈ G we have λ(x)Ǩ ∈ F# and, for all f ∈ F ,

〈λ(x)Ǩ, f〉F =
∫
G

f(y)λ(x)Ǩ (y) dy =
∫
G

f(y)K(y−1x) dy = j(f) ∗K (x).

Hence j(f) ∗K(x) exists and the first equality of (9) holds true. The change of variables y 7→ xy
proves the second equality of (9). Since the involution and x 7→ `(x−1)f are continuous, (9) implies
that j(f) ∗K is a continuous function.

To prove b), fix a compact subset K ⊂ G. By (9), since Ǩ ∈ F# ⊂ F ′, there exist two
semi-norms qj , qk in the fundamental saturated system {qi}i and constants C and C ′ such that

sup
x∈K
|j(f) ∗K (x)| ≤ C sup

x∈K−1
qj(`(x)f) ≤ Cqk(f),

where the last inequality follows from the fact that `(K−1) is equicontinuous since K−1 is compact
(see Section 6.2).

As for c), since F is a metrizable vector space, it is sufficient to prove thatMF is sequentially
closed. Take a sequence (fn)n in MF converging to f ∈ F . Possibly passing to a subsequence,
we can assume that there exists a negligible set N such that for all x /∈ N (fn(x))n converges
to f(x). Furthermore, possibly changing N , we can also assume that, for all n ∈ N and x /∈ N ,
j(fn) ∗K (x) = fn(x). Hence, given x /∈ N , by b) we have

j(f) ∗K (x) = lim
n
j(fn) ∗K (x) = lim

n
fn(x) = f(x).

Hence j(f) ∗K = j(f) in L0(G), that is f ∈ MF . Finally, given x ∈ G and f ∈ MF , by (77b) in
the appendix

j(`(x)f) = λ(x)j(f) = λ(x)(j(f) ∗K) = λ(x)j(f) ∗K = j(`(x)f) ∗K,
that is `(x)f ∈MF .

In what follows, for each f ∈ MF , we choose the continuous everywhere defined function
j(f) ∗K as representative of f , so that for all x ∈ G

j(f) ∗K (x) = f(x). (11)
4Short for: uniform convergence on compact sets.

8



2.4 Extension of the voice transform and Fourier transform

We are interested in extending the voice transform V from H to some bigger space, namely the
dual of a Fréchet space E which is continuously embedded into H, in such a way that the duality
relation (5) still holds true. In the classical coorbit space theory and in our setting, E is the space
of test functions S, which in [21] is the basic object on which the theory is developed.

We fix a Fréchet space E together with a continuous representation τ of G acting on E and a
continuous embedding i : E → H intertwining τ and π. As above, we identify the dual E′ and the
anti-dual E∧. We are interested in the transpose ti : H → E′, defined as usual by

〈 ti(w), v〉E = 〈w, i(v)〉H.
We assume that u ∈ i(E) and, with slight abuse of notation, we regard u as an element both in E
and in H. Hence, we define the extended voice transform by

Ve : E′ → C(G), VeT = 〈T, τ(·)u〉E , (12)

which intertwines the contragredient representation tτ with the left regular representation λ.

Hereafter we establish some useful properties of the abstract space E, that will be applied to
the space S of test functions in Section 3.1.

A basic requirement on Ve is that it must be injective. In the next lemma some standard
equivalent conditions are established.

Lemma 2.3. The following facts are equivalent:

[i)] the map Ve is injective; the set τ(G)u is total in E; the set τ(G)u is total in5 Eweak.

1.2.3. Proof. Define D as the closure in E of the linear span of τ(G)u . Since the linear span of τ(G)u is
convex, D is convex (Proposition 14 Chapter II.2.6 of [25]). Then D is a closed convex subset, and
so it is also weakly closed (Proposition 1 Chapter IV.1.1 of [25]). Therefore D is also the closure
in Eweak of the linear span of τ(G)u. This proves the equivalence between 2) and 3).

Next, assume 2), that is D = E. If T ∈ E′ is such that VeT = 0, then 〈T, v〉E = 0 for
all v ∈ D = E, hence T = 0. Therefore 2) implies 1). Finally, suppose D ( E. Then, as a
consequence of the Hahn–Banach theorem ([26], Proposition 2, p.180), there exist T ∈ E′ and
v0 ∈ E \ D such that 〈T, v〉E = 0 for all v ∈ D and 〈T, v0〉E 6= 0, so that VeT = 0 but T 6= 0.
Therefore 1) implies 2).

By definition, u is a cyclic vector for the representation τ if condition 2) holds true. Notice
that the cyclicity for π does not imply the cyclicity for τ , since the topology of E is finer than the
topology of H.

The topological dual of E comes now into play and will be denoted by E′. When topological
properties are involved, E′ is understood to have the topology of the convergence on the bounded
subsets of E. We will write E′s to stress when E′ is rather thought with the topology of the simple
convergence (compare Section 6.4).

The following proposition shows that, for any function f ∈ L0(G) satisfying a suitable inte-
grability condition, it is possible to define an element in E′ which plays the role of the Fourier
transform of f at u. It is useful to compare our assumption (13) with condition (R3) in [21].

5Evidently, Eweak is just E endowed with the weak topology.
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Proposition 2.4. Take f ∈ L0(G) and assume that

f V i(v) ∈ L1(G) for all v ∈ E. (13)

Then there exists a unique π(f)u ∈ E′ such that, for all v ∈ E,

〈π(f)u, v〉E =
∫
G

f(x)〈π(x)u, i(v)〉H dx =
∫
G

f(x)V i(v)(x) dx. (14)

For any such f , we have
Veπ(f)u = f ∗K. (15)

Finally, assume that K ∗K exists, is equal to K and that f ∗ (|K| ∗ |K|) exists. Then

Veπ(f)u ∗K = Veπ(f)u. (16)

Proof. Define the map Ψ : G→ E′s by Φ(x) = f(x) ti(π(x)u). Since for all v ∈ E

〈Ψ(x), v〉E = f(x)〈π(x)u, i(v)〉H = f(x)V i(v)(x),

by (13) we know that the map Ψ is scalarly β-integrable. Since E is a Fréchet space, then it satisfies
the (GDF) property. Then Theorem 6.4 applies, showing that the scalar integral

∫
Ψ(x)dx exists

and belongs to E′ (see Section 6.4). We set π(f)u =
∫

Ψ(x)dx and, by definition of scalar integral,
(14) holds true for all v ∈ E. Also, for all x ∈ G,

Veπ(f)u (x) =
∫
G

f(y)〈π(y)u, i(τ(x)u)〉H dy =
∫
G

f(y)〈π(y)u, π(x)u〉H dy = (f ∗K)(x).

Finally, under the ongoing assumptions, (77d) in the appendix implies that (f ∗K) ∗K = f ∗ (K ∗
K) = f ∗K, so that (16) is a direct consequence of (15).

If (13) is satisfied, we say that the Fourier transform of f at u exists in E′ or, simply, that
π(f)u ∈ E′ exists. Condition (13) is actually both necessary and sufficient to define π(f)u as an
element of E′. The next lemma ensures that the voice transform is reproduced by convolution.

Lemma 2.5. Assume that the extended voice transform is injective and take T ∈ E′. The following
assertions are equivalent:

[a)] VeT ∗K exists and satisfies the reproducing formula

VeT ∗K = VeT ; (17)

for all x ∈ G, the map y 7→ 〈T, τ(y)u〉E〈π(y)u, π(x)u〉H is in L1(G) and∫
G

〈T, τ(y)u〉E〈π(y)u, π(x)u〉Hdy = 〈T, τ(x)u〉E .

If the Fourier transform of VeT at u exists in E′, i.e. the map x 7→ VeT (x) ti(π(x)u) is scalarly
integrable, then a) and b) are also equivalent to each of the following assertions:

[a)] π(VeT )u = T ; the reconstruction formula

T =
∫
G

〈T, τ(x)u〉E ti(π(x)u)dx. (18)

holds true weakly.
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1.2.3.4. Proof. The equivalence between 1) and 2) is just the definition of Ve and K. Taking into account
that Ve is injective, the equivalence between 1) and 3) follows from (15) with f = VeT . The
equivalence between 3) and 4) is just the definition of scalar integral.

In the next proposition we assume that the Fourier transform π(f)u exists in E′ for all f ∈ F ,
where F is a Fréchet space satisfying the assumptions of Section 2.3. With slight abuse of notation,
we write π(f)u instead of π(j(f))u. We define the coorbit space

Co(E′, F ) = {T ∈ E′ | VeT ∈ j(F )}.

Proposition 2.6. Take E
i
↪→ H, F

j
↪→ L0(G) and K(x) = 〈u, π(x)u〉H as above. Assume that for

all f ∈ F and all v ∈ E
j(f)V i(v) ∈ L1(G), (19)

which may be rephrased as V (i(E)) ⊂ F#. Then:

[a)]the Fourier transform of any f ∈ F at u exists in E′, so does the convolution j(f) ∗K,
and

Veπ(f)u = j(f) ∗K; (20)

the space MF , defined by (10), is an `-invariant closed subspace of F , Co(E′, F ) is a tτ -
invariant subspace of E′, and Ve intertwines tτ with λ; the map (f, v) 7→ 〈π(f)u, v〉E is
continuous from F × E into C; if Ve is injective and the reproducing formula (17) holds for
all T ∈ Co(E′, F ), then

Ve Co(E′, F ) = j(MF ), (21a)

{π(f)u | f ∈MF } = Co(E′, F ), (21b)

Veπ(f)u = j(f), f ∈MF , (21c)
π(VeT )u = T, T ∈ Co(E′, F ). (21d)

Hence, Ve is a bijection of Co(E′, F ) onto j(MF ) and therefore it induces a bijection, denoted
again by Ve, from Co(E′, F ) onto MF , whose inverse is the Fourier transform at u.

1.2.3.4. Proof. Item a) is a direct consequence of Proposition 2.4. Item b) is due to Proposition 2.2. The
invariance property of Co(E′, F ) is a consequence of the fact that Ve tτ(x) = λ(x)Ve for all x ∈ G.

As for c), since F and E are Fréchet spaces it is enough to show that (f, v) 7→ 〈π(f)u, v〉E
is separately continuous. Clearly, given f ∈ F , the map v 7→ 〈π(f)u, v〉E is continuous since
π(f)u ∈ E′. On the other hand, given v in E, the hypothesis (19) states that V i(v) ∈ F#.
Lemma 2.1 shows that V i(v) ∈ F ′ where the identification is given by (6), namely

〈V i(v), f〉F =
∫
G

V i(v)(x)f(x) dx =
∫
G

f(x)〈π(x)u, i(v)〉H dx = 〈π(f)u, v〉E ,

so that f 7→ 〈π(f)u, v〉E is continuous.

Finally, we prove d). The definition of MF and (20) imply (21c). Given T ∈ Co(E′;F ), by
definition VeT ∈ j(F ) and, hence, the convolution VeT ∗ K exists. Furthermore, by assumption
VeT ∗K = VeT . Hence, condition 1) of Lemma 2.5 is satisfied and this implies that π(VeT )u = T ,
which is (21d). To prove (21a) and (21b), observe that the reproducing formula implies that
Ve Co(E′;F ) ⊂ j(MF ) and equality (21d) that Co(E′, F ) ⊂ {π(f)u | f ∈ MF }. Furthermore,
since MF ⊂ F , implies {π(f)u | f ∈MF } ⊂ Co(E′, F ) and, hence, j(MF ) ⊂ Ve Co(E′, F ).
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The above result is an adaptation of Theorem 2.3 of [21]. Conditions (R3) and (R4) in [21] are
replaced by (19) and the reproducing property (17), respectively.

Under all the assumptions of Proposition 2.6, in particular the conditions of item d), the space
Co(E′, F ) has a natural topology that makes it a Fréchet space.

Corollary 2.7. The space Co(E′, F ) is a Fréchet space with respect to any of the following equiv-
alent topologies:

[a)]the topology induced by the family of semi-norms {qi(Ve(·))}i, where {qi}i is any funda-
mental family of semi-norms of F ; the initial topology induced from the topology of F by the
restriction of the voice Ve; the final topology induced from the topology of F , restricted to
MF , by the Fourier transform at u.

1.2.3. Proof. By Proposition 2.6, Ve is a bijection from Co(E′, F ) onto MF whose inverse is the Fourier
transform at u, the initial and final topologies on Co(E′, F ) coincide and they realize Co(E′, F ) as
a Fréchet space (isomorphic to MF ). The equivalence between a) and b) is a standard result (see
remark before Example 4 Ch. 2.11 of [26]). The equivalence between b) and c) follows from the
fact that Ve is a bijection. Since MF is a closed subspace of a Fréchet space, then both MF and
Co(E′, F ) are (isomorphic) Fréchet spaces.

2.5 Reproducing representations: the standard setup

In this section, we further assume that π is a reproducing representation and that the vector u is
an admissible vector for π. This means that the voice transform V maps H into L2(G) and that
for all v ∈ H

‖v‖H = ‖V v‖2. (22)

To stress that the voice transform is an isometry of H into L2(G), we write it with the suffix 2:

V2 : H → L2(G), V2v(x) = 〈v, π(x)u〉H.

Recalling that K = V2u and (4), we have

Ǩ = K ∈ L2(G). (23)

In the following proposition, some consequences of the assumption that π is reproducing are drawn.
The results are well known for irreducible representations [27, 28] and their extensions to non-
irreducible representations are taken for granted in many papers. We provide a proof based on
Proposition 2.6.

Proposition 2.8. Suppose that π is a reproducing representation of G on H and that u ∈ H is
an admissible vector. Then:

[a)]for every f ∈ L2(G), the Fourier transform of f at u exists in H and for all v ∈ H

〈π(f)u, v〉H = 〈f, V2v〉2;

for every f ∈ L2(G) the convolution f ∗K exists and

V2π(f)u = f ∗K, (24)

where both sides belong to C0(G) and, for every v ∈ H,

V2v ∗K = V2v; (25)
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in particular, K = K ∗K. the space

M2 = {f ∈ L2(G) | f ∗K = f}

is a λ-invariant closed subspace of L2(G) and

V2H =M2; (26)

V2π(f)u = f, for all f ∈M2; (27)
π(V2v)u = v, for all v ∈ H. (28)

Hence, the voice transform V2 is a unitary map from H onto M2 whose inverse is given by
the map f 7→ π(f)u.

1.2.3. Proof. We first prove (25). By (76c) with p = q = 2, the convolution V2v ∗ K exists and is in
C0(G) because Ǩ ∈ L2(G) by (23). Furthermore, given x ∈ G, for all y ∈ G

V2v(y)λ(x)Ǩ(y) = V2v(y)λ(x)K(y) = V2v(y) (V2π(x)u)(y).

Integrating with respect to y, we obtain

V2v ∗K = 〈V2v, V2π(x)u〉2 = 〈v, π(x)u〉H = V2v.

To prove the remaining statements, we apply Proposition 2.6 with F = L2(G) and E = E′ = H,
with the understanding that i and j are the canonical inclusions, λ = `, π = τ and V = V2. Observe
that (19) is satisfied since V2H ⊂ L2(G) = L2(G)# and, by (25), the reproducing formula (17)
holds for every v ∈ H, regarded as anti-linear form on H. Furthermore, by (76c) in the appendix
with p = q = 2, for all f ∈ L2(G) the function f ∗K is in C0(G), taking (23) into account.

3 Main results

In this section, we assume that the representation π is reproducing and that the vector u ∈ H is
admissible, as in Section 2.5. We will construct a coorbit space theory based on the choice of a
suitable target space T embedded in L0(G).

3.1 The space of test functions and distributions

We choose a Fréchet space T with

[i)]a continuous embedding j : T → L0(G); a continuous representation ` of G acting on T
such that j`(x) = λ(x)j for all x ∈ G; a continuous involution f 7→ f such that j(f) = j(f),

so that T enjoys all the properties of the space F in Section 2, from which we adopt the notations.
In particular, as in (10), we put

MT = {f ∈ T | j(f) ∗K = j(f)}.

The classical theory corresponds to the choice T = L1(G), or a weighted version of it. The following
assumptions are at the root of our construction and are trivially satisfied for L1(G).

Assumption 1. The kernel K is in j(T ) and j(f)K ∈ L1(G) for all f ∈ T , i.e K ∈ j(T ) ∩ T #.
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Assumption 2. For all f ∈MT and all v ∈ H we have j(f)V2v ∈ L1(G), i.e V2H ⊂ (MT )#.

Assumption 3. The linear space spanned by the orbit {`(x)K | x ∈ G} is dense in MT .

By Proposition 2.2, Assumption 1 implies that for all f ∈ T the convolution j(f) ∗ K exists
and MT is a closed `-invariant subspace of T , so that span{`(x)K | x ∈ G} is a subspace of MT .
Assumption 3 is formulated with a slight abuse of notation, regarding K as an element of T . It is
a strengthening of Assumption 1 because it is equivalent to the requirement that K is actually a
cyclic vector for the representation ` restricted to MT .

Assumptions 1 and 2 should be compared with hypotheses (R2) and (R3) of [21]. In our
approach they are needed to define the test space, as in the classical setting, whereas in [21] the
test space is given a-priori. We are now in a position to define the space of test signals, namely

S = {v ∈ H | V2v ∈ j(T )}. (29)

We define the restricted voice transform V0 : S → T as the unique map satisfying jV0 = V2i, that
is, for all v ∈ S and x ∈ G we put

(V0v)(x) = 〈i(v), π(x)u〉H

where i : S → H is the canonical inclusion. It is by means of V0 that we topologize S: we endow
S with the initial topology induced by V0. As it will be shown in Theorem 3.1 below, this is
just an explicit description of the topology that S naturally inherits as coorbit space, because
S = Co(H, T ). Observe that Assumption 1 implies that u ∈ S, since K ∈ j(T ).

Theorem 3.1. The space S is a Fréchet space isomorphic to MT via V2, and j(MT ) ⊂ L2(G).
The canonical embedding i : S → H is continuous and has dense range. The transpose ti : Hs → S ′s
is continuous, injective and has dense range. The representation π leaves S invariant, its restriction
τ to S is a continuous representation of G acting on S and u is a cyclic vector of τ .

1.2.3. Proof. We first prove that S is a Fréchet space. Let E = H and F = T . By the properties i), ii)
and iii) stated at the beginning of this section, we are in the general setting of Section 2.4. Observe
that H′ = H, Ve = V2 and clearly S = Co(H, T ). Furthermore, the fact that π is reproducing
implies that V2 is injective and, by (25) in Proposition 2.8, the reproducing formula holds true for
all v ∈ H. Hence V2v ∈ j(MT ) for all v ∈ S, and we actually get S = Co(H,MT ). We can apply
Corollary 2.7 because the hypotheses of Proposition 2.6 that imply it are both satisfied: (19) is
just Assumption 2 and, as already noticed, the reproducing property holds for all v ∈ S because π
is reproducing. Hence S is a Fréchet space and V0 induces a topological linear isomorphism from
S onto MT . Since V2H ⊂ L2(G), clearly j(MT ) ⊂ L2(G).

Since S and MT are isomorphic, in order to show that i is continuous it is enough to prove
that j is continuous from MT into L2(G). Both are Fréchet spaces, hence it is sufficient to show
that j :MT → L2(G) has sequentially closed graph. If (fn)n is a sequence in MT converging to
f in MT and (j(fn))n converges to ϕ in L2(G), then possibly passing to a subsequence, we can
assume that (fn(x))n converges for almost all x ∈ G. Hence ϕ(x) = f(x) almost everywhere.

Item b) of Proposition 2.6 gives that π leaves S invariant. Since for all x ∈ G and v ∈ S

V0τ(x)v = `(x)V0v,

the restriction τ is a continuous representation on S because ` is a continuous representation on T .
The fact that π is reproducing implies that span{π(x)u | x ∈ G} ⊂ S is dense in H, so that i has
dense range.
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Finally, since V0τ(x)u = `(x)K for all x ∈ G, Assumption 3 is another way of saying that u is
a cyclic vector for τ . As for the properties of ti, Corollary 3 Chapter II.6.3 of [25] shows that i is
continuous from Sweak into Hweak. Hence, Corollary of Proposition 5 Chapter II.6.4 of [25] gives
that ti is continuous from Hs = Hweak into S ′s and t(ti) = i. Finally, Corollary 2 Chapter II.6.4 of
[25] shows that since i is injective and has dense range, ti has the same properties.

As shown in the above proof, all the hypotheses of Corollary 2.7 are satisfied. This implies that,
whenever a fundamental family {qi}i of semi-norms of T is given, then {qi(V0(·))}i is a fundamental
family of semi-norms of S. This is yet another way to get a direct handle on its topology when a
family of seminorms of T is known.

We regard the dual S ′ of S as the space of distributions and we define the extended voice
transform on it by setting for all T ∈ S ′

Ve : S ′ → C(G), VeT = 〈T, τ(·)u〉S . (30)

The definition works because S is τ -invariant, u ∈ S and τ is a continuous representation. The
following theorem states the main properties of V0 and Ve. We recall that the contragredient
representations tτ and t` are continuous representations acting on S ′ and T ′, respectively, where the
dual spaces are endowed with the topology of the convergence on compact subsets (see Proposition 3
Chapter VIII.2.3 of [29]). Furthermore, since π is a reproducing representation, Proposition 2.8
ensures that for all f ∈ L2(G) the Fourier transform of f at u exists in H.

Theorem 3.2. The restricted voice transform V0 is an injective strict morphism6 from S into T
with image MT . For all f ∈MT , we have

π(f)u ∈ S, V0π(f)u = f

and, for all v ∈ S, we have
π(V0v)u = v.

Furthermore, V0 intertwines τ and ` and its transpose tV0 : T ′s → S ′s is a surjective continuous
map, intertwining the representations t` and tτ .

The extended voice transform Ve intertwines tτ with λ, is injective and continuous from S ′ to
C(G), where both spaces are endowed with the topology of compact convergence. Finally, for all
Φ ∈ T # ⊂ T ′, we have

Ve
tV0Φ = Φ ∗K. (31)

Proof. By Theorem 3.1, V0 induces a topological linear isomorphism from S onto MT , which is a
closed subspace of T . Corollary 1, Chapter II.4.2 of [25] gives that tV0 is surjective. By Corollary of
Proposition 5, Chapter II.6.4 of [25], the map tV0 is continuous when both T ′ and S ′ are equipped
with the topology of the simple convergence.

Since π is reproducing and j(f) ∈ L2(G) for all f ∈MT , Proposition 2.8 shows that V2π(j(f))u =
j(f) ∈ j(T ). Hence, by definition of S, π(j(f))u ∈ S and the construction of V0 gives that
V0π(f)u = f , where, with slight abuse of notation, π(f)u is the Fourier transform of j(f) at u.
Take now v ∈ S. Since V0v ∈MT , again Proposition 2.8 yields π(V0v)u = v.

The intertwining property is straightforward: for any x, y ∈ G(
Ve

tτ(x)T
)

(y) = 〈T, τ(x−1)τ(y)u〉S = VeT (x−1y).

6A strict morphism is a continuous linear map whose image is closed.
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Injectivity is due to the fact that u is cyclic for τ . To prove that Ve is continuous, fix a compact
subset Q of G. Since x 7→ τ(x)u is continuous, the set A = τ(Q)u is compact in S, and T 7→
supv∈A|〈T, v〉S | is continuous on S ′. Finally, take Φ ∈ T #. Then for all x ∈ G

Ve
tV0Φ(x) = 〈Φ, V0τ(x)u〉T =

∫
G

Φ(y)〈π(x)u, π(y)u〉Hdy = (Φ ∗ V2u)(x).

We add a remark on the finer topological properties of Ve. If B is a bounded subset of S ′ or,
equivalently, of S ′s, the restriction of Ve to B, endowed with the topology of S ′s, into C(G), with
the topology of the compact convergence, is continuous. Indeed, since S is a Fréchet space, then
it is barrelled (Corollary of Proposition 2 Chapter III.4.2 of [25]). Hence

strongly bounded⇔ weakly bounded⇔ equicontinuous.

(Scolium and Definition 2 Chapter III.4.2 of [25]). Proposition 5 Chapter III.3.4 of [25] implies
that on B the topology of the simple convergence is equivalent to the topology of precompact
subsets. Hence, for any compact subset K of G, since x 7→ τ(x)u is continuous, the set A = τ(K)u
is compact in S, hence precompact and, by the above reasoning B 3 T 7→ supv∈A|〈T, v〉S | is
continuous with respect to the topology of the simple convergence.

The next assumption requires that the reproducing formula holds for any distribution in S ′.
Assumption 4. For all T ∈ S ′, K VeT ∈ L1(G) and VeT ∗K = VeT .

Since the representation tτ leaves S ′ invariant and Ve intertwines tτ with λ, the requirement
K VeT ∈ L1(G) implies that VeT ∗ K exists. Furthermore, if VeS ′ is contained in T #, then
K VeT ∈ L1(G) holds for all T ∈ S ′ since K ∈ T .

In the two propositions that follow, we give sufficient conditions implying Assumption 4.

Proposition 3.3. Assume that MT is a reflexive space and K VeT ∈ L1(G) for all T ∈ S ′. Then
the reproducing formula VeT ∗K = VeT holds true for all T ∈ S ′.

Proof. Since S and MT are isomorphic (Theorem 3.1), then also S is a reflexive space. Regard S
as the dual of S ′, which has the property (GDF) by Proposition 3 Chapter 6. Appendix No.2 of
[30]. The assumption implies that the map x 7→ τ(x)u〈π(y)u, u〉H is scalarly integrable from G to
Ss, hence Theorem 6.4 shows that there exists vu ∈ S such that

〈T, vu〉S =
∫
G

〈T, τ(x)u〉S〈π(x)u, u〉Hdx.

By Theorem 3.1, H is dense in S ′s and by (25) vu = u, which means that

〈T, u〉S =
∫
G

〈T, τ(x)u〉S〈π(x)u, u〉Hdx.

Given y ∈ G, by applying the above equality to tτ(y−1)T , we get

VeT (y) = 〈T, τ(y)u〉S = 〈 tτ(y−1)T , u〉S

=
∫
〈 tτ(y−1)T , τ(x)u〉S〈π(x)u, u〉H dx

=
∫
〈T, τ(yx)u〉S〈π(x)u, u〉H dx

=
∫
〈T, τ(x)u〉S〈u, π(x−1y)u〉H dx,
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where the last line is due to the change of variable x 7→ y−1x and the fact that π is a unitary
representation. Hence the convolution V T ∗K exists and is equal to VeT .

The property K VeT ∈ L1(G) for all T ∈ S ′ means that the map x 7→ τ(x)u〈π(y)u, u〉H is
scalarly integrable from G to S, i.e., there exists a linear map ω : S ′ → C such that

ω(T ) =
∫
G

〈T, τ(x)u〉S〈π(x)u, u〉Hdx.

Furthermore, since H is continuously embedded in S ′ and π is a reproducing representation, for
all w ∈ H we have

ω( ti(w)) = 〈w, u〉H.
By Theorem 3.1, the map ti has a dense image in S ′s. However, ω is continuous with respect to
the weak-∗ topology of S ′ if and only if ω ∈ S. In the setting of reproducing representations, the
requirement that the reproducing formula holds for all distributions is equivalent to assuming that
ω ∈ S and, in this case, ω is precisely u. The hypothesis ω ∈ S is precisely property (R4) in [21].
Furthermore, if S is a Banach space, as in the classical setting, and if the map x 7→ τ(x)u〈π(y)u, u〉H
is Bochner-integrable, then it is scalarly integrable and, clearly, ω is always in S.

Here is another sufficient condition.

Proposition 3.4. Assume that T # = T ′ and suppose that |K|∗ |K| exists and belongs to T . Then
VeT ∗K = VeT for all T ∈ S ′.

Proof. By Theorem 3.1, tV0 is surjective, so that if T ′ = T #, then for any T ∈ S ′ there exists
Φ ∈ T # such that tV0Φ = T . Furthermore, if |K| ∗ |K| exists and belongs to T , then∫

G×G
|Φ(zx)〈π(x)u, π(y)u〉H〈π(y)u, u〉H|dx dy =

∫
G

|Φ(zx)|
(∫

G

|K(y)||K(y−1x)|dy
)
dx

=
∫
G

|λ(z−1)Φ(x)|(|K| ∗ |K|)(x) dx

and, since |λ(z−1)Φ| ∈ T #, the last integral is finite for all z ∈ G. By (77a) and (23), we have that
ˇ|K| ∗ |K| = |K| ∗ |K|, hence Fubini theorem implies that the convolution |Φ| ∗ (|K| ∗ |K|) exists,

and (77d) in the appendix shows

(Φ ∗K) ∗K = Φ ∗ (K ∗K).

Finally, (31) and (25) give

VeT ∗K = (Φ ∗K) ∗K = Φ ∗ (K ∗K) = Φ ∗K = VeT.

3.2 Coorbit spaces

We now fix a Banach space Y , with norm ‖·‖Y , continuously embedded in L0(G) and λ-invariant.
In order to be consistent with the current literature, we do not indicate the explicit embedding
as we did for the other spaces. The results in this section hold true under the weaker assumption
that Y is a Fréchet space. However, we do not need this generality because the main example that
we are interested in is the case when Y is a weighted Lp space for a fixed value of p.

The coorbit space of Y is
Co(Y ) = {T ∈ S ′ | VeT ∈ Y } (32)
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endowed with the norm
‖T‖Co(Y ) = ‖VeT‖Y . (33)

Since Ve is a linear injective map, ‖·‖Co(Y ) is clearly a norm. We will prove below that Co(Y ) is
in fact a Banach space.

Just as for the target space T , the two basic assumptions for the space Y may be formulated
in terms of Köthe duals and have to do with the kernel K (compare Assumption 5 below with
Assumption 1) and with the image of the voice transform V2H (compare Assumption 6 below
with Assumption 2). They should also be compared with the corresponding assumptions made in
[20, 23, 21]. As above, we write

MY = {f ∈ Y | f ∗K = f}.

Assumption 5. For all f ∈ Y , we have fK ∈ L1(G), that is, K ∈ Y #.

Assumption 6. For all f ∈MY and all v ∈ S, we have fV0v ∈ L1(G), i.e., V0S ⊂ (MY )#.

By Proposition 2.2 applied to F = Y , Assumption 5 implies that MY is a λ-invariant closed
subspace of Y . Furthermore, by Proposition 2.4 with E = S, Assumption 6 implies that for all
f ∈MY the Fourier transform of f at u exists in S ′.

In the following proposition we list the main properties of Co(Y ).

Proposition 3.5. The space Co(Y ) is a Banach space invariant under the action of the represen-
tation tτ . The extended voice transform is an isometry from Co(Y ) onto MY and its inverse is
the Fourier transform at u. Therefore

Ve Co(Y ) =MY ,

{π(f)u | f ∈MY } = Co(Y ),

Veπ(f)u = f, f ∈MY ,

π(VeT )u = T, T ∈ Co(Y ).

Proof. The proposition is a restatement of Proposition 2.6 and Corollary 2.7 with E = S and
F =MT . The hypothesis (19) is Assumption 6 and the hypothesis in item d) of Proposition 2.6
is satisfied by Assumption 3 and Assumption 4.

As in the classical setting, we have the following canonical identification.

Corollary 3.6. The Hilbert space L2(G) satisfies Assumptions 5 and 6, and Co(L2(G)) = H.

Proof. Since π is a reproducing representation, Assumptions 5, and 6 are clearly satisfied, and
H ⊂ Co(L2(G)). Take now T ∈ Co(L2(G)). By Proposition 3.5 T = π(VeT )u. However, since
V2T ∈ L2(G), by Proposition 2.8 π(VeT )u ∈ H.

Even though T is not a Banach space, the space

Co(T ) = {T ∈ S ′ | VeT ∈ T }

is well defined and, under Assumption 4, Corollary 3.6 and the definition of S imply that, as in
the classical setting, Co(T ) = S. The above identification suggests to characterize the space

Co(T ′) = {T ∈ S ′ | VeT ∈ T #} ⊂ S ′.
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The equality Co(T ′) = S ′ is equivalent to require that j(f)VeT ∈ L1(G) for all f ∈ T and T ∈ S ′,
that is, VeS ′ ⊂ T #, which is in general stronger than Assumption 4.

Let us compare our approach with the theory developed by J. Christensen and G. Ólafsson in
[20, 23, 21]. Assumptions 1÷6 ensure that the test space S defined by (29) satisfies the properties
(R1)÷(R4), and some of our claims can be directly deduced by the results contained in [21] (for
example, compare Theorem 2.3 of [21] with our Proposition 3.5). In our setting, which is somehow
parallel to the classical L1 case, we first introduce the target space T , which is independent of the
reproducing representation, and then we define the test space S as the set of vectors for which
the voice transform belongs to T . The introduction of the target space T makes our construction
closer to the classical approach by H. Feichtinger and K. Gröchenig, and Assumptions 1, 2, 3 and
4 involve only the target space T without any reference to the model space Y . Moreover, our
proofs mainly rely on the theory of weak integrals à la Dunford-Pettis, which allows us to state
our hypotheses as integrability conditions, rather than a continuity requirement as in [21].

Assumption 4 requires that the reproducing formula VeT ∗K = VeT holds for all T ∈ S ′. How-
ever, in the proof of Proposition 3.5, the reproducing formula is needed only for the distributions
in Co(Y ) (compare with item d) of Proposition 2.6). The following lemma shows some equivalent
conditions, weaker than Assumption 4, under which Proposition 3.5 remains true.

Lemma 3.7. Take T and Y such that Assumptions 1, 2, 3 and Assumptions 5, 6 hold true. Then
the following facts are equivalent:

[a)] for all T ∈ Co(Y ), VeT ∈MY ; for all T ∈ Co(Y ), VeT ∗K exists and VeT ∗K = VeT ;
for all T ∈ Co(Y ), the map x 7→ 〈T, τ(x)u〉S〈π(x)u, u〉H = VeT (x)K(x) is in L1(G) and∫

G

〈T, τ(x)u〉S〈π(x)u, u〉Hdx = 〈T, u〉S ; (34)

for all T ∈ Co(Y ), the map x 7→ VeT (x) ti(π(x)u) ∈ S ′s is scalarly integrable and its scalar
integral is T , that is

T =
∫
G

〈T, τ(x)u〉S ti(π(x)u) dx. (35)

1.2.3.4. Proof. By definition of coorbit space, VeT ∈ Y whenever T ∈ Co(Y ). Hence 1) is equivalent to
2). Since Co(Y ) is tτ -invariant, 3) implies that the map y 7→ 〈 tτ(x−1)T , τ(y)u〉S〈π(y)u, u〉H is
integrable for all x ∈ G and

VeT (x) = 〈T, τ(x)u〉S =
∫
〈 tτ(x−1)T , τ(y)u〉S〈π(y)u, u〉H dy

=
∫
〈T, τ(y)u〉S〈π(y)u, π(x)u〉H dy.

Hence c) implies item 2) of Lemma 2.5. The converse is also true by evaluation at the identity.
Therefore c) is equivalent to item 2) of Lemma 2.5, which provides the equivalence between 2) and
3) and shows that 4) implies 3).

Assume now that VeT ∈MY . Proposition 2.4 with f = VeT gives that VeT satisfies (13), that
π(VeT )u ∈ S ′ exists and Veπ(VeT )u = VeT . Finally, since Ve is injective by Theorem 3.2, we know
from item 4) of Lemma 2.5 that 1) implies 4).

3.3 Dependency on the admissible vector

We now examine the dependence of space S on the choice of the admisible vector u. For this
reason, in this section, we write Su instead of S, and accordingly for other choices of admissible
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vectors.

Proposition 3.8. Suppose that j(T ) ∗ j(Ť ) ⊂ j(T ) and that for all g ∈ T the map

f 7→ f ∗ ǧ (36)

is continuous from T into itself, where j(f ∗ ǧ) = j(f) ∗ ǰ(g). If ũ ∈ Su ⊂ H is another admissible
vector satisfying Assumptions 1, 2 and 3, then the test function spaces Sũ and Su coincide as
Fréchet spaces. Furthermore, Šu = Su for any admissible u and

Vũv = Vuv ∗ ˇVuũ.

for all v ∈ Sũ = Su.

Proof. Let v ∈ Su and x ∈ G. Since π is reproducing and u is admissible,

V2,ũv (x) = 〈v, π(x)ũ〉H

=
∫
G

〈v, π(y)u〉H〈π(x)ũ, π(y)u〉H dy

=
∫
G

〈v, π(y)u〉H〈ũ, π(x−1y)u〉H dy

= V2,uv ∗ ˇV2,uũ (x),

where V2,uv, V2,uũ ∈ j(T ) since v, ũ ∈ Su. The hypothsis on T implies that V2,ũv ∈ j(T ), so that
Su ⊂ Sũ. We now prove that the embedding of Su into Sũ is continuous. Fix a semi-norm ‖·‖i,Sũ
of Sũ, i.e, fix a semi-norm ‖·‖i,T of T such that ‖v‖i,Sũ = ‖V2,ũv‖i,T for all v ∈ Sũ. By (36) with
f = V2v and g = V0ũ, there exist a constant C > 0 and a semi-norm ‖·‖j,T of T such that

‖v‖i,Sũ = ‖V2,ũv‖i,T ≤ C‖V2v‖j,T = C‖v‖j,Su
where ‖·‖j,Su is a semi-norm of Su. Hence, the embedding is continuous. Interchanging the roles of
u and ũ, we obtain that Sũ ⊂ Su with a continuous embedding. Finally by (77a) in the appendix
and (23), for all v ∈ Su,

ˇV0v = ˇV0v ∗K = K ∗ ˇV0v ∈ T
by assumption, so that Šu ⊂ Su and, hence, Šu = Su.

In the classical framework, π is irreducible and T = L1(G,wβ), where w is a continuous density
satisfying (60a) and (60b) in the appendix and

w(x) = w(x−1)∆(x−1). (37)

This last condition implies that T = Ť so that the hypotheses of the above proposition are satisfied.
However, a stronger result holds true, namely

{u ∈ H | Ku ∈ T } = S,
which is the content of Lemma 4.2 in [1]. Note that the irreducibility ensures that, if Ku ∈ T ,
then u is an admissible vector. However, if π is not irreducible, the above equality does not hold
as shown by a counter-example in [22].

4 A model for the target space

In this section, we illustrate some examples. They include band-limited functions (Section 4.2),
Shannon wavelets (Section 4.3) and Schrödingerlets (Section 4.4) that have inspired our theory.
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4.1 Intersection of all Lp
w(G) with 1 < p < +∞

In this section, w : G→ (0,+∞) will denote a continuous function, to be called weight, satisfying

w(xy) ≤ w(x)w(y) (38a)

w(x) = w(x−1) (38b)

for all x, y ∈ G. As a consequence, it also holds that

inf
x∈G

w(x) ≥ 1. (38c)

The notion of weight in [4] is based on the submultiplicative property (38a). The symmetry (38b)
can always be satisfied by replacing w with w + w̌. This requirement is necessary for our devel-
opment (see item g) of Theorem 4.4 below). Condition (38c) is explicitly stated in [4] and, in
the classical L1(G) setting, it is necessary to ensure that the test space is a Banach space (see
Theorem 5.5 below). In the usual irreducible L1 setting, it is also assumed that the weight satis-
fies (37), which is actually incompatible with (38b). However, (37) is only necessary in order to
see that the space of admissible vectors coincides with the test space (see Lemma 4.2 in [1]). In
the non irreducible case, though, this set-theoretic equality is lost anyhow, as mentioned in the
introduction [22].

For all p ∈ [1,∞) define the separable Banach space

Lpw(G) = {f ∈ L0(G) |
∫
G

|w(x)f(x)|pdx < +∞}

with norm
‖f‖pp,w =

∫
G

|w(x)f(x)|pdx,

and the obvious modifications for p = ∞. Clearly, the map Jp : Lpw(G) → Lp(G) defined by
Jp(f) = wf is a unitary operator. The following characterization of the Köthe dual holds true.

Lemma 4.1. Fix p ∈ [1,+∞) and denote by q = p
p−1 ∈ (1,+∞] the dual exponent. Then

Lpw(G)# = Lqw−1(G).

For all g ∈ Lqw−1(G) and f ∈ Lpw(G), set

〈g, f〉p,w =
∫
G

g(x)f(x)dx.

Then the map g 7→ 〈g, ·〉p,w is an isomorphism from Lqw−1(G) onto Lpw(G)′. Under this identifica-
tion, the transpose tJp : Lq(G)→ Lqw−1(G) is given by

tJph = wh.

Proof. For g ∈ L0(G) we have g ∈ Lpw(G)# if and only if gf ∈ L1(G) for every f ∈ Lpw(G), which
is equivalent to (w−1g)(wf) ∈ L1(G) for every wf ∈ Lp(G). This, in turn, happens if and only if
w−1g ∈ Lq(G), which means that g ∈ Lqw−1(G). Hence Lqw−1(G) = Lpw(G)# ⊂ Lpw(G)′, the pairing
〈·, ·〉p,w is the pairing between Lpw(G)# and Lpw(G) given in Lemma 2.1, and

‖g‖Lpw(G)′ = sup
‖f‖p,w≤1

|〈g, f〉p,w| = sup
‖wf‖p≤1

|〈w−1g, wf〉p| = ‖w−1g‖q = ‖g‖q,w−1 .

Thus the map g 7→ 〈g, ·〉p,w is an isometry from Lqw−1(G) into Lpw(G)′ and it allows to identify
Lqw−1(G) with a closed subspace of Lpw(G)′.
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We now compute the transpose of Jp, taking into account that Lp(G)′ = Lq(G). For a fixed
h ∈ Lq(G) and all f ∈ Lpw(G) we have

〈 tJph, f〉p,w =
∫
G

h(x)w(x)f(x)dx,

so that, since w is positive, tJph = wh ∈ Lpw(G)# = Lqw−1(G). Since Jp is unitary, so is tJp and
Lpw(G)′ = Lqw−1(G).

Lemma 4.2. For all p ∈ [1,+∞), the left regular representation leaves Lpw(G) invariant. The
restriction ` of λ to Lpw(G) is a continuous representation with ‖`(x)‖ ≤ w(x) for all x ∈ G.

Proof. Fix x ∈ G. By (38a), for all f ∈ Lpw(G)∫
G

|w(y)f(x−1y)|pdy =
∫
G

|w(xy)f(y)|pdy ≤ w(x)p
∫
G

|w(y)f(y)|pdy,

so that λ(x) leaves Lpw(G) invariant and the norm of the restriction `(x) is bounded by w(x). We
now prove that ` is continuous by applying the concluding remark of Section 6.2 in the appendix.
For any compact subset K of G, since w is continuous, w(K) is bounded and, hence, `(K) is
equicontinuous. Furthermore, if f ∈ Cc(G), the map x 7→ `(x)f is clearly continuous from G into
Lqw(G) by the dominated convergence theorem. The proof is completed by observing that Cc(G)
is a dense subset of Lpw(G).

Let I = (1,+∞). We define the target space as the set

Tw =
⋂
p∈I

Lpw(G)

with the initial topology, which makes each inclusion ip : Tw ↪→ Lpw(G) continuous, and endow

Uw = span
⋃
q∈I

Lqw−1(G)

with the final topology, which makes each inclusion ι̃q : Lqw−1(G) ↪→ Uw continuous.

Recall that by definition of initial and of final topology, for any topological space X, a map
A : X → Tw is continuous if for all p ∈ I there exists a continuous map Ap : X → Lpw(G) such
that ipA = Ap, and a map B : Uw → X is continuous if all q ∈ I there exists a continuous map
Bq : Lqw−1(G)→ X such that Bι̃q = Bq.

As for notation, given the nature of Tw, the inclusion j : Tw → L0(G) is set-theoretically
tautological because the elements of Tw are (equivalence classes of) measurable functions. However,
we keep it to emphasize that the two spaces, Tw and L0(G), have different topologies.

The following theorem states the main properties of Tw and Uw.

Theorem 4.3. The space Tw is a reflexive Fréchet space, whose topology is given by the funda-
mental family of semi-norms {‖·‖p,w}p∈I . It is closed under complex conjugation and f 7→ f is
continuous. The canonical inclusion j : Tw → L0(G) is continuous, the left regular representation
λ leaves Tw invariant and the restriction ` of λ to Tw is a continuous representation of G on Tw.

The space Uw is a complete reflexive locally convex topological vector space. For each g ∈ Uw,
the anti-linear map from Tw into C given by

f 7→
∫
G

g(x)f(x) dx = 〈g, f〉Tw
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is continuous and g 7→ 〈g, ·〉Tw identifies, as topological vector spaces, the dual of Tw with Uw.
Furthermore the Köthe dual of Tw is Uw, so that

T ′w = T #
w = Uw. (39)

For each f ∈ Tw, the anti-linear map from Uw to C

g 7→
∫
G

f(x)g(x) dx = 〈f, g〉Uw

is continuous and f 7→ 〈f, ·〉Uw identifies, as topological vector spaces, the dual of Uw with Tw.

Proof. The proof is based on the content of the article [31], whose main results are summarized
by Theorem 6.5 in the appendix, where T = T1 and U = U1 (in [31] it is assumed that w = 1).

By definition of initial topology, Tw is a locally convex topological space and {‖·‖p,w}p∈I is a
fundamental family of semi-norms.

Clearly, Tw is closed under complex conjugation and is left invariant by λ. We show that ` is
a continuos representation. Given x ∈ G, `(x) : Tw → Tw is continuous because ip`(x) = λ(x)ip.
Given f ∈ Tw, the map x 7→ `(x)f is continuous from G to Tw since such are the maps x 7→
ip`(x)f = `(x)ipf for all p ∈ I. The proof that complex conjugation is continuous is similar.

Define the linear map J : Tw → T , Jf = wf . Since w > 0, J is a bijection whose inverse is
given by J−1g = w−1g. Both maps are continuous by definition of initial topology since

ipJ = Jpip ipJ
−1 = J−1

p ip,

for all p. Hence J is a topological isomorphism. By Theorem 6.5, we infer that T is a reflexive
Fréchet space and, hence, Tw is a reflexive Fréchet space, too.

Define J̃ : U → Uw, J̃h = wh, which is clearly bijective and whose inverse is J̃−1g = w−1g. By
definition of final topology, both are continuos since for all q ∈ I

J̃ ι̃q = ι̃q
tJ q
q−1

J̃−1ι̃q = ι̃q J
−1
q

(with slight abuse, here ι̃q denotes the inclusion of Lq(G) into U). Hence J̃ is an isomorphism from
U onto Uw. Therefore, by Theorem 6.5, Uw is a complete barelled locally convex topological vector
space since such is U .

Since J is an isomorphism between two Fréchet spaces, by Corollary 5 of Chapter IV.4.2 of [25],
tJ is an isomorphism from U onto T ′w explicitly given by

〈 tJh, f〉Tw =
n∑
i=1

ci

∫
G

hi(x)w(x)f(x)dx =
∫
G

(J̃h)(x)f(x)dx,

where h =
∑
cihi with c1, . . . , cn ∈ C and h1 ∈ Lq1(G), . . . , hn ∈ Lqn(G). Hence, we can identify

T ′w and Uw as topological vector spaces by means of the map J̃ tJ
−1, and the pairing between Uw

and Tw is

〈g, f〉Tw =
∫
G

g(x)f(x)dx.

Observe that (38c) implies w(x)−1 ≤ w(x) for all x ∈ G, so that Tw ⊂ Uw = T ′w. Furthermore,
(38b) ensures that f̌ ∈ Tw if and only if w̌f ∈ T .
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We are now ready to state the main result of this section.

Theorem 4.4. Take a reproducing representation π of G acting on the Hilbert space H and a
weight w satisfying (38a), (38b) and (38c). Choose an admissible vector u ∈ H such that

K(·) = 〈u, π(·)u〉H ∈ Lpw(G) for all p ∈ I (40)

and set

Sw = {v ∈ H | 〈v, π(·)u〉H ∈ Lpw(G) for all p ∈ I},

‖v‖p,Sw =
(∫

G

|〈v, π(x)u〉H|pw(x)pdx
) 1
p

.

Then:

[a)]the space Sw is a reflexive Fréchet space with respect to the topology induced by the family
of semi-norms {‖v‖p,Sw}p∈I , the canonical inclusion i : Sw → H is continuous and with
dense range; the representation π leaves Sw invariant, its restriction τ is a continuous rep-
resentation acting on Sw, and

i(τ(x)v) = π(x)i(v) x ∈ G, v ∈ Sw;

if H and S ′w are endowed with the weak topology, the transpose ti : H → S ′w is continuous,
injective, with dense range and satisfies the intertwining

tτ(x) ti(v) = ti(π(x)v) x ∈ G, v ∈ H;

the restricted voice transform V0 : Sw → Tw, given by

V0v(x) = 〈i(v), π(x)u〉H x ∈ G, v ∈ Sw,
is an injective strict morphism onto the closed subspace

MTw = {f ∈ Tw | j(f) ∗K = j(f)},
and it intertwines τ and `; every f ∈ Tw, has at u a Fourier transform in Sw and

j(V0π(f)u) = j(f) ∗K;

furthermore, the map
Tw 3 f 7→ π(f)u ∈ Sw

is continuous and its restriction to MTw is the inverse of V0; every Φ ∈ Uw has at u a
Fourier transform in S ′w and

Veπ(Φ)u = Φ ∗K;

the extended voice transform given by (30) takes values in Uw, it is injective, continuous
(when both spaces are endowed with the strong topology) and intertwines tτ and λ; the range
of Ve is the closed subspace

MUw = {Φ ∈ Uw | Φ ∗K = Φ} = span
⋃
p∈I
MLpw(G) ⊂ L∞w−1(G) (41)

and for all T ∈ S ′w and v ∈ Sw
〈T, v〉Sw = 〈VeT , V0v〉Tw ; (42)

the map
MUw 3 Φ 7→ π(Φ)u ∈ S ′w

is the inverse of Ve and coincides with the restriction of the map tV0 to MUw , namely

Ve( tV0Φ) = Veπ(Φ)u = Φ Φ ∈MUw . (43)
tii(Sw) = {T ∈ S ′w | VeT ∈ Tw} = {π(f)u | f ∈MTw}.
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The fundamental requirement (40) states that K ∈ Tw ⊂ T ′w = T #
w = Uw, whereas (42) is

the reconstruction formula for the distributions in S ′w, namely the fact that for any T ∈ S ′w the
formula

〈T, v〉Sw =
∫
G

〈T, τ(x)u〉Sw〈π(x)u, i(v)〉H dx (44)

holds for all v ∈ Sw, where the integral converges since 〈π(·)u, i(v)〉H is in Tw by definition of Sw,
and 〈T, τ(·)u〉Sw is in Uw = T #

w since the range of Ve is contained in Uw (for arbitrary target spaces
this last property could fail).

1.2.3.4.5.6.7.8.9. Proof. Since K ∈ j(Tw) ⊂ Uw = T #
w , Assumption 1 is satisfied. Furthermore, since j(Tw) ⊂

L2
w(G) ⊂ L2(G) by (38c), also Assumption 2 is satisfied. The topology induced by the family of

semi-norms {‖v‖p,Sw}p∈I is the initial topology on Sw induced by the map V0, as in the proof of
Corollary 2.7.

[a)]By Theorem 3.1 which does not depend on Assumption 3, the space Sw is a Fréchet space
isomorphic to MTw and the canonical inclusion i : Sw → H is continuous and with dense
range. Furthermore, since MTw is a closed subspace of a reflexive Fréchet space, both MTw
and Sw are reflexive. Apply Theorem 3.1. Apply Theorem 3.1 for the main statement; the
intertwining property is easily checked. Apply Theorem 3.2. Fix f ∈ Tw. By (38c) j(f) ∈
L2(G) and by Proposition 2.8 there exists π(f)u ∈ H such that V2π(f)u = j(f)∗K. We claim
that j(f) and K are convolvable (see the appendix for the definition) and j(f) ∗K ∈ j(Tw).
It is enough to show that for all r ∈ I, |wf | ∗ |wK| ∈ Lr(G). Indeed, given x ∈ G

w(x)
∫
G

|f(y)||K(y−1x)| dy =
∫
G

|w(y)f(y)||w(y−1x)K(y−1x)| w(x)
w(y)w(y−1x)

dy

≤ |wj(f)| ∗ |wK|(x),

by (38a). Define p = q = 2r
1+r > 1, so that 1

p+ 1
p = 1

r+1. Then by assumption wj(f) ∈ Lp(G),
wK ∈ Lq(G) and w̌K = wǨ ∈ Lq(G). Hence (76b) applies, showing that |wj(f)| and |wK|
are convolvable, |wj(f)| ∗ |wK| ∈ Lr(G) and ‖|wj(f)| ∗ |wK|‖r ≤ C‖wf‖p, where C is a
constant depending on q and K. Hence j(f) ∗K ∈ Lrw(G) and

‖j(f) ∗K‖r,w ≤ C‖j(f)‖p,w. (45)

Therefore j(f)∗K ∈ j(Tw). By definition of Sw, π(f)u ∈ Sw and j(V0π(f)u) = j(f)∗K. The
map f 7→ π(f)u is continuous by (45). By Theorem 3.2, the map MTw 3 f 7→ π(f)u ∈ Sw
is the inverse of V0. Fix Φ ∈ Uw. By linearity we can assume that Φ is in some Lpw−1(G), so
that Φj(f) is in L1(G) for all f ∈ Tw. In particular for all v ∈ Sw we have Φj(V0v) ∈ L1(G)
because V0v ∈ Tw, and by Proposition 2.4 there exists π(Φ)u ∈ S ′w. Furthermore, recalling
that tV0 is a linear map from T ′w onto S ′w, for all v ∈ Sw we have

〈 tV0Φ, v〉Sw = 〈Φ, V0v〉Tw =
∫
G

Φ(x)〈i(v), π(x)u〉Hdx =
∫
G

Φ(x)〈π(x)u, i(v)〉Hdx.

Comparing this equation with the definition of π(Φ)u we get tV0Φ = π(Φ)u and, by (31),
Veπ(Φ)u = Φ ∗K. Fix T ∈ S ′w. Since tV0 is surjective, there exists Φ ∈ Uw = T ′w such that
T = tV0Φ = π(Φ)u, so that VeT = Φ ∗K. To show that VeT ∈ Uw we prove that Φ and K
are convolvable whenever Φ ∈ Uw, their convolution Φ ∗K is in Uw and the map Φ 7→ Φ ∗K
is continuous from Uw into Uw. By definition of Uw, it is enough to show that, given p ∈ I,
for all Φ ∈ Lpw−1(G), Φ and K are convolvable, Φ ∗K ∈ L2p

w−1(G) and the map Φ 7→ Φ ∗K is
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continuous from Lpw−1(G) into L2p
w−1(G). As above,

w(x)−1

∫
G

|Φ(y)||K(y−1x)| dy = w(x)−1

∫
G

|Φ(xy)||K(y−1)| dy

=
∫
G

|w−1(xy)Φ(xy)||K(y−1)|w(xy)
w(x)

dy

≤
∫
G

|w−1(xy)Φ(xy)||w(y−1)K(y−1)| dy

= |w−1Φ| ∗ |wK|(x),

where in the third line we used both (38a) and (38b). By assumption w−1Φ ∈ Lp(G),
wK ∈ Lq(G) where we set q = 2p

2p−1 > 1, and w̌K = wǨ ∈ Lq(G). Since 1
p + 1

q = 1
2p + 1,

(76b) gives that |w−1Φ| and |wK| are convolvable, |w−1Φ| ∗ |wK| ∈ L2p(G) and

‖|w−1Φ| ∗ |wK|‖2p ≤ C‖w−1Φ‖p

where C is a constant depending on p and K. Hence Φ ∗K ∈ L2p
w−1(G) and

‖Φ ∗K‖2p,w−1 ≤ C‖Φ‖p,w−1 .

This proves the claim. Note that, since Φ 7→ Φ ∗ K is continuous, MUw is closed. We
observe en passant that Uw is not a Fréchet space, so that Proposition 2.2 does not apply.
We now prove that VeT = VeT ∗ K. Since |K| ∈ Tw, reasoning as in the proof of item 5),
|K| ∗ |K| ∈ Tw. Furthermore, if g = |K| ∗ |K|, so that ǧ = g, then as above Φ and g are
convolvable and (77d) gives that

VeT ∗K = (Φ ∗K) ∗K = Φ ∗ (K ∗K) = Φ ∗K = VeT,

so that the range of Ve is contained in MUw . From 6) we know that π(Φ)u ∈ S ′w whenever
Φ ∈MUw and that Veπ(Φ)u = Φ ∗K = Φ, showing that Ve is onto MUw and that the map

MUw 3 Φ 7→ π(Φ)u ∈ S ′w

is the inverse of Ve, as claimed in item 8). Next, we prove (42). Fix v ∈ Sw and define the
map Ψ : G→ Sw by

Ψ(x) = 〈π(x)u, i(v)〉Hτ(x)u = V0v(x)τ(x)u.

For all T ∈ S ′w, VeT ∈ Uw and V0v ∈ Tw, so that x 7→ 〈T,Ψ(x)〉Sw is in L1(G). Since Sw is a
reflexive Fréchet space, we can regard Sw as the dual of S ′w, which has the property (GDF)
by Proposition 3 Chapter 6. Appendix No.2 of [30]. The fact that the map x 7→ 〈T,Ψ(x)〉Sw
is in L1(G), means that Ψ is scalarly integrable. Theorem 6.4 shows that its (scalar) integral
is in Sw, i.e. that there exists ψ ∈ Sw such that

〈T, ψ〉Sw =
∫
G

〈T, τ(x)u〉Sw〈π(x)u, v〉Hdx.

With the choice T = ti(z), z ∈ H, (25) gives that 〈z, i(ψ)〉H = 〈z, i(v)〉H. Since this
last equality holds true for all z ∈ H and i is injective, then ψ = v and this proves (42).
Furthermore, the reproducing formula (42) implies that Ve is injective. Finally, we prove that
Ve is continuous. Fix a bounded subset B in Tw. By e) the map f 7→ π(f)u is continuous
from Tw into Sw. Then B′ = π(B)u is a bounded subset of Sw. Furthermore, given T ∈ S ′w

sup
f∈B
|〈VeT , f〉Tw | = sup

f∈B
|
∫
G

〈T, τ(x)u〉Swf(x)dx| = sup
f∈B
|〈T, π(f)u〉Sw | = sup

v∈B′
|〈T, v〉Sw |.
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Since B′ is a bounded subset of Sw, the map T 7→ supv∈B′ |〈T, v〉Sw | is continuous, hence Ve
is such. The rightmost equality (41) is a consequence of the definition of Uw and the inclusion
follows from the fact that VeS ′ ⊂ L∞w−1(G). Indeed, for all x ∈ G

|VeT (x)| = |〈T, τ(x)u〉|S ≤ CT max
i≤n
‖τ(x)u‖pi,S ≤ C max

i≤n
‖`(x)K‖pi ≤ C max

i≤n
‖K‖pi w(x)

where C is a constant depending on T , p1, . . . , pn are suitable numbers in I also depending
on T , and the last bound is a consequence of Lemma 4.2. See the proof of the above item.
Apply d) of Proposition 2.6 with F = Tw and E = Sw, taking into account 5).

We summarize the findings in this section in the following theorem which is one of the main
results of this paper since it shows that our analysis is indeed applicable.

Theorem 4.5. If K ∈ Tw, then Assumptions 1÷ 4 are satisfied for Tw.

1.2.3.4.5.6.7.8.9. Proof. Under the hypothesis (40), Assumption 1 is satisfied, and j(Tw) ⊂ L2
w(G) ⊂ L2(G) implies

Assumption 2. The reconstruction formula (44) clarifies that u is a cyclic vector for τ , which is
equivalent to Assumption 3 since V0τ(x)u = `(x)K and V0 is an injective strict morphism from Sw
onto MTw . Finally, (44) with v = τ(x)u implies that Assumption 4 holds true.

Observe that Theorem 4.5 paves the way for a coorbit space theory with a specific choice of
target space, namely Tw. Indeed, if Y is a Banach space continuously embedded in L0(G) and
λ-invariant, and we assume that K ∈ Y # and that MxsY is a subspace of Uw, then Assumptions
5 and 6 are satisfied. Hence Proposition 3.5 holds true, giving rise to a coorbit theory for Y .
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We summarize the general scheme in the following picture.COORBIT SPACES WITH VOICE IN A FRÉCHET SPACE 2

Figure 1. Spaces of functions and distributions
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Figure 1: Objects on the group on top row, signals on bottom row.

4.2 Band-limited functions

As a toy example, we consider the space of band-limited signals on the real line. Although elemen-
tary, and certainly very natural, this case can not be handled by the classical coorbit machinery.
This is somewhat unsatisfactory, because the sinc function is one of the first examples of repro-
ducing kernels which comes to mind. Our theory does handle it, and the natural coorbit spaces
that arise are the Paley–Wiener p-spaces.

In this section, G is the additive group R and the Haar measure is the Lebegue measure dx.
We denote by S(R) the Fréchet space of rapidly decreasing functions and by S(R)′ the space of
tempered distributions. The Fourier transform on S(R) and S(R)′ is denoted by F . Regarding
L2(R) as a subspace of S(R)′, we set v̂ = Fv for any v ∈ L2(R).

The representation π is the regular representation restricted to the Paley–Wiener space of
functions with band in the fixed compact interval Ω ⊂ R, namely

H = B2
Ω = {v ∈ L2(R) : supp(v̂) ⊆ Ω}.
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Strictly speaking, the elements of B2
Ω are not functions, but equivalence classes of functions. How-

ever, in view of the Paley–Wiener–Schwartz theorem [32], each equivalence class in B2
Ω has a unique

representative which is continuous (in fact smooth). We are thus allowed to identify each class
with its smooth representative, and we shall do so.

Since the group R acts on B2
Ω by translations:

π(b)v(x) = v(x− b), v ∈ B2
Ω,

on the frequency side, π̂ = FπF−1 acts on FH = L2(Ω) by modulations:

π̂(b)v̂(ξ) = e−2πibξ v̂(ξ), v ∈ B2
Ω.

This representation is not irreducible: any subset Ξ ⊆ Ω gives a subrepresentation on B2
Ξ. For the

reader’s convenience, we summarize in the next proposition the main facts that are relevant to our
discussion.

Proposition 4.6. The representation π is reproducing and the following facts hold true.

[a)] A vector u ∈ B2
Ω is admissible if and only if |û| = 1 almost everywhere on Ω. In this

case, the kernel K is
K = 〈u, π(·)u〉H = F−1χΩ,

where χΩ is the characteristic function on Ω. Let u be an admissible vector. Then u(x) =
K(x) for every x ∈ R if and only if the corresponding voice transform V2 is the inclusion

V2 : B2
Ω ↪→ L2(R).

If Ω = [−ω, ω] is a symmetric interval, then the kernel is the sinc function

K(b) = 2ω sinc(2ωπb),

where sincx = sinx/x.

1.2.3. Proof. The fact that π is reproducing follows from item a).

[a)]Applying the Plancherel identity, we can compute the voice transform as

V2v(b) = 〈v, π(b)u〉 = 〈v̂, π̂(b)û〉 =
∫

R̂
v̂(ξ)û(ξ) e2πibξ dξ = F−1(v̂û)(b), (46)

whose squared norm, again by Plancherel, is

‖V2v‖2 =
∫

R̂
|v̂(ξ)û(ξ)|2dξ.

On the other hand, Plancherel also entails

‖v‖2 =
∫

R
|v(x)|2dx =

∫
R̂
|v̂(ξ)|2dξ.

Therefore, u is admissible if and only if |û(ξ)| = 1 for almost every ξ ∈ supp(v̂) ⊆ Ω. Since
Ω is compact, vectors u ∈ B2

Ω satisfying the above condition clearly exist and, hence, π is
reproducing. If u is admissible, using (46) we obtain K = V2u = F−1(|û|2) = F−1(χΩ).
Suppose that u = K. Then, in view of item (1) we have û = χΩ, and equality (46) gives
V2v = F−1(v̂) = v for every v ∈ B2

Ω, so that V2 is the natural inclusion. Conversely, if this
is the case, then K = V2u = u. If Ω = [−ω, ω], from (46) it follows

K(b) = V2u(b) =
∫

R̂
|û(ξ)|2 e2πibξ dξ =

∫ ω

−ω
e2πibξ dξ = 2ω sinc(2ωπb).
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From now on we set Ω = [−ω, ω] and

u = K = F−1χΩ = 2ω sinc(2ωπ·).
Clearly, K is not in L1(R), but it belongs to Lp(R) for every p > 1. We thus choose the weight
w = 1 and take

T =
⋂
p∈I

Lp(R)

as target space to construct coorbits (recall that I = (1,+∞)).

For p ∈ [1,+∞), we define the Paley–Wiener p-spaces

BpΩ = {f ∈ Lp(R) : supp(Ff) ⊆ Ω}.

Recall that the Fourier transform maps Lp to Lp
′

for p 6 2 , while for p > 2 we get distributions
that in general are not functions [32].

The spaces BpΩ are usually defined in the literature as the spaces of the entire functions of fixed
exponential type whose restriction to the real line is p-integrable [33]. This definition is equivalent
to ours since a Paley–Wiener theorem holds for all p ∈ [1,+∞). In particular, all these functions
are indefinitely differentiable on R. Moreover, if f ∈ BpΩ with p < +∞, then f(x)→ 0 as x→ ±∞,
hence

BpΩ ⊂ C∞0 (R), 1 6 p < +∞.
Consequently, the Paley–Wiener spaces are nested and increase with p:

BpΩ ⊆ BqΩ 1 6 p 6 q < +∞.
We are going to identify our coorbit spaces as Paley–Wiener spaces. To show this, we shall
repeatedly make use of the following fact.

Lemma 4.7. There exists a family of functions {ĝε} ⊂ C∞c (R̂) satisfying

[i)] lim
ε→0

ĝε = χΩ in Lq(R̂) for every q > 1; χ[−ω+ε,ω−ε] 6 ĝε 6 χ[−ω−ε,ω+ε]; ‖∂ĝε‖∞ . ε−1.

such that for all f ∈ Lp(R), with p > 1, in S′(R̂)

F(f ∗K) = lim
ε→0
F(f)ĝε. (47)

Take f ∈ Lp(R). By Young’s inequality (76b) we know that f ∗K ∈ Lr for some r > 1, so that
f ∗K ∈ S′(R) and the left hand side is the Fourier transform of a tempered distribution. Similarly,
F(f)ĝε ∈ S′(R) because ĝε ∈ C∞c (R), and on the right hand side we also have Fourier transforms
of tempered distributions.

1.2.3. Proof. Take

ĥ ∈ C∞c (R), supp(ĥ) ⊆ [−1, 1], ĥ > 0,
∫

R̂
ĥ(ξ)dξ = 1,

and then consider the corresponding approximate identity {ĥε} defined by the dilations of ĥ

ĥε(ξ) = ε−1ĥ(ξ/ε), ε > 0,

so that ĥε ∈ C∞c (R̂), and define ĝε = ĥε ∗χΩ. Since both factors are L1-functions, the convolution
theorem gives that gε = hεK. A classical result, see Corollary 3.4 of [34], shows that ĝε → χΩ in
Lq(R) for every q > 1 and ĝε ∈ C∞c (R). Moreover,

supp(ĝε) ⊆ supp(ĥε) + supp(χΩ) ⊆ [−ε, ε] + Ω = [−ω − ε, ω + ε].
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Expanding the convolution, we get

ĝε(ξ) = ε−1

∫
Ω

ĥ((ξ − τ)/ε)dτ =
∫

(Ω+ξ)/ε

ĥ(τ)dτ

by a change of variable. Notice here that if |ξ| 6 ω − ε, then |ξ + ετ | 6 ω whenever |τ | 6 1, which
means that (Ω + ξ)/ε ⊇ [−1, 1] ⊇ supp(ĥ). It follows that

ĝε(ξ) =
∫

R̂
ĥ(τ)dτ = 1

for every ξ ∈ [−ω+ε, ω−ε]. The derivative of ĝε is ∂(ĥε∗χΩ) = ∂ĥε∗χΩ, and ∂ĥε(ξ) = ε−2∂ĥ(ξ/ε).
A change of variable then yields

|∂ĝε(ξ)| 6 ε−1

∫
[−1,1]

|∂ĥ(τ)|dτ 6 2 sup(|∂ĥ|)ε−1.

Finally, let hε = F−1ĥε. By dominated convergence, for all x ∈ R

lim
ε→0

hε(x) =
∫

R
ĥ(ξ) dξ = 1,

so that
lim
ε→0

gε(x) = lim
ε→0

hε(x)K(x) = K(x),

and at the same time
|hε(x)K(x)|q 6 ‖h‖q∞|K(x)|q

for any q > 1. Therefore hεK → K in Lq(R), by dominated convergence. Young’s inequality
implies now that f ∗ hεK → f ∗K in some Lr(R), hence as tempered distributions. Therefore

F(f ∗K) = lim
ε→0
F(f ∗ gε) = lim

ε→0
F(f)F(gε) = lim

ε→0
F(f)ĝε

by the continuity of the Fourier transform and an application of the convolution theorem, because
f ∈ S′(R) and gε ∈ S(R) (see Theorem XV, Ch. VII in [35]).

We are now ready to state the characterization of the natural coorbit spaces relative to band
limited functions.

Proposition 4.8. Let Ω = [−ω, ω] and take u = K = F−1χΩ. The space of test functions is

S =
⋂
p∈I

BpΩ

and the space of distributions is
S ′ =

⋃
p∈I

BpΩ.

The extended voice transform is the inclusion

Ve : S ′ ↪→ U

and the coorbits of the Lp spaces are

Co(Lp(R)) =Mp = BpΩ.
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Proof. Since V2 is the inclusion by item 2) of Proposition 4.6, we have

S = {v ∈ B2
Ω : v ∈ Lp(R) ∀p > 1} =

⋂
p∈I

BpΩ.

In order to describe S ′, we first observe that⋃
p∈I
Mp = span

⋃
p∈I
Mp =MU .

Indeed, since w = 1, by item (41)Mp ⊂ L∞(G), so thatMp ⊂Mq whenever p ≤ q. Furthermore,
item 8) of Theorem 4.4 implies that Ve = tV0 establishes a linear isomorphism from MU =⋃
p∈IMp to S ′. In particular, S ′ is the range tV0MU .

Since V0 : S ↪→ T is the inclusion, the transpose map tV0 : T ′ → S ′ is simply the restriction on
the subspace S. Therefore, we can explicitly represent S ′ as the space of anti-linear functionals

v ∈ S 7−→
∫

R
Φ(x)v(x)dx, Φ ∈

⋃
p∈I
Mp.

The two spaces are thus canonically identified and, with this identification, Ve is the inclusion
S ′ ↪→ U .

We next prove that Mp = BpΩ for all p ∈ I. Let f ∈ Mp and ϕ be a smooth function with
compact support contained in Ωc. Then, by Lemma 4.7, we have

〈f̂ , ϕ〉 = lim
ε→0

∫
f̂(ξ)ĝε(ξ)ϕ(ξ)dξ,

for some ĝε with supp(ĝε) ⊆ Ω + [−ε, ε]. Since Ω + [−ε, ε] ∩ supp(ϕ) = ∅ for ε small enough, the
limit is zero. This means that supp(f̂) ⊆ Ω, that is f ∈ BpΩ.

Conversely, let f ∈ BpΩ. We shall prove that Ff = F(f ∗K), whence f = f ∗K and f ∈ Mp.
Thanks to formula IV’ at page 111 in [33], there exists a continuous function ψ, periodic on Ω such
that

f(x) =
∫

Ω

[(1− x)ψ(ω) + xψ(ξ)] e2πixξ dξ.

Hence
f(x) = (1− x)ψ(ω)F−1χΩ(x) + xF−1(ψχΩ)(x),

so that, in S(R),

Ff = ψ(ω)(1− i

2π
∂)χΩ +

i

2π
∂(ψχΩ).

This tempered distribution acts on any function ϕ ∈ S(R) by

〈Ff, ϕ〉 = ψ(ω)〈χΩ, (1 +
i

2π
∂)(ϕ)〉 − 〈ψχΩ,

i

2π
∂ϕ〉

=
∫

Ω

[
ψ(ω)(1 +

i

2π
∂)ϕ(ξ)− ψ(ξ)

i

2π
∂ϕ(ξ)

]
dξ. (48)

On the other hand, we know from Lemma 4.7 that

F(f ∗K) = lim
ε→0
F(f)ĝε,

32



where the limit is taken in S′(R). Compute now

〈F(f)ĝε, ϕ〉 = 〈Ff, ĝεϕ〉

= ψ(ω)〈χΩ, (1 +
i

2π
∂)(ĝεϕ)〉 − 〈ψχΩ,

i

2π
∂(ĝεϕ)〉

=
∫

Ω

[
ψ(ω)(1 +

i

2π
∂)ϕ(ξ)− ψ(ξ)

i

2π
∂ϕ(ξ)

]
ĝεdξ

+
i

2π

∫
Ω

(ψ(ω)− ψ(ξ))ϕ(ξ)∂ĝε(ξ)dξ.

By ii) of Lemma 4.7, ĝε → χΩ pointwise, then the limit of the first integral is precisely (48). It
remains to verify that the last integral tends to zero. Notice that it vanishes on [−ω + ε, ω − ε]
because, by Lemma 4.7, ĝε = 1, hence ∂ĝε = 0. The rest of the integral is dominated by[

sup
−ω6ξ6−ω+ε

|ψ(ω)− ψ(ξ)|+ sup
ω−ε6ξ6ω

|ψ(ω)− ψ(ξ)|
]
‖ϕ‖∞‖∂ĝε‖∞ ε

. sup
−ω6ξ6−ω+ε

|ψ(ω)− ψ(ξ)|+ sup
ω−ε6ξ6ω

|ψ(ω)− ψ(ξ)|,

thanks to iii) of Lemma 4.7. But this tends to zero as ε → 0, because ψ(ω) = ψ(−ω). We have
proven that Mp = BpΩ for all p. Thus we finally obtain

S ′ =
⋃
p∈I

BpΩ and Co(Lp(R)) = BpΩ.

4.3 Shannon wavelet

We consider now the special case of a non integrable kernel for the wavelet representation of
the affine group on L2(R). It is well known that this representation is reproducing and admits
admissible vectors whose kernel is integrable [36, 37, 1]. The resulting coorbit spaces are completely
understood as homogeneous Besov spaces [7, 1]. However, there are admissible vectors whose kernel
is not integrable, as for example the Shannon wavelet, which provides another example for which
our theory applies.

At first sight, this result might look surprising. Indeed, in [1], H. Feichtinger and K. Gröchenig
claim that any band limited function whose Fourier transform has compact support bounded away
from zero leads to an integrable kernel. However, a careful inspection of the proof reveals that the
additional assumption that the Fourier transform is continuous is implicitly needed.

Let G = R o R+ be the connected component of the affine group with left Haar measure
db da/a2. The wavelet representation π acts on H = L2(R) by dilations and translations:

π(b, a)v(x) = a−1/2v((x− b)/a).

The (real) Shannon wavelet is defined as

û(ξ) = χ[1/4,1/2](|ξ|) = χ[−1/2,1/2](ξ)− χ[−1/4,1/4](ξ),

that is
u(x) = sinc(πx)− 1

2
sinc(

π

2
x) =

1
2

sinc(
π

4
x) cos(

3
4
πx).

It is easily seen that u /∈ L1(R), but u ∈ Lp(R) for all p > 1. We now prove that the corresponding
kernel has the same behavior.
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Lemma 4.9. The kernel K = V2u associated with the Shannon wavelet

u(x) =
1
2

sinc(
π

4
x) cos(

3
4
πx)

is in Lp(G) for all p > 1, but it is not in L1(G).

Proof. Since u is real and even, the voice transform V2 is

V2v(b, a) =
∫
v(x)a−1/2u((x− b)/a)dx = (v ∗ π(0, a)u) (b).

The Shannon kernel is thus

K(b, a) = V2u(b, a) = (u ∗ π(0, a)u)(b).

Since u is admissible, K ∈ L2(G) and, by Fubini theorem, u ∗ π(0, a)u ∈ L2(R) for almost every
a > 0. Then, by the convolution theorem for L2-functions

F(u ∗ π(0, a)u)(β) = û(β) ̂π(0, a)u(β) = a1/2χ[1/4,1/2]∩[1/4a,1/2a](|β|).

It follows that:

[a)] K(·, a) 6= 0 only if a ∈ (1/2, 2); if a ∈ (1/2, 2) the Fourier transform of K(·, a) is a
non-zero characteristic function.

By 2), for almost all a ∈ (1/2, 2) the function u∗π(0, a)u cannot be in L1(R), otherwise its Fourier
transform would be continuous. Hence K /∈ L1(G). Let us show that K ∈ Lr(G) for all r > 1.
From 1) we have∫

R+

∫
R
|K(b, a)|rdbda

a2
=
∫ 2

1/2

∫
R
|u ∗ π(0, a)u(b)|rdbda

a2
=
∫ 2

1/2

‖u ∗ π(0, a)u‖rr
da

a2
.

Recall that u ∈ Lp(R) for all p > 1, so that the same holds for π(0, a)u . By Young’s inequality
(76b) for the unimodular group G = R, we can estimate the inner norm and obtain

‖K‖rr 6 ‖u‖rp
∫ 2

1/2

‖π(0, a)u‖rq
a2

da,

where p and q are such that 1/p + 1/q = 1/r + 1. This integral is finite, because the function
a 7→ ‖π(0, a)u‖rq/a2 is continuous and the interval [1/2, 2] is compact.

A Shannon wavelet coorbit theory can thus be implemented taking voices in the target space
T =

⋂
p∈I L

p(G), but not in L1(G).

4.4 Schrödingerlets

In this section, we illustrate the example that has motivated the search for a full coorbit theory in
which one encounters reproducing kernels that do enjoy nice integrability properties but are not
necessarily in L1(G). The main feature of this example is that once the admissibility conditions
are worked out, it is relatively easy to exhibit kernels in

⋂
p∈I L

p(G) but hard to find a kernel in
L1(G). This example has shown up in the classification of reproducing triangular subgroups of
Sp(2,R), which was recently achieved in [38, 18].
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We shall be concerned with the three-dimensional group generated by rotations, dilations and
flows of two-dimensional signals, in a sense to be made precise below. The group acts on functions
via radial affine transformations, and the associated voice transform can thus be seen as a Fourier
series of one-dimensional wavelets. This representation is highly reducible, and reproducing.

The group G is the direct product of the (connected component of) affine group of the line with
the unit circle

G = (R o R+)× S1

and its elements are parametrized by (b, a, ϕ) with b ∈ R, a > 0 and ϕ ∈ [0, 2π). A left Haar
measure is

dx =
db da

a2

dϕ

2π
.

Notice that G is not unimodular and has modular function ∆(b, a, ϕ) = a−1.

The representation π that we are going to define acts on L2(R× S1), endowed with the tensor
product of the Lebesgue measure and the normalized Haar measure on S1. The action is

π(b, a, ϕ)v(x, ϑ) = a−1/2 v((x− b)/a, ϑ− ϕ), v ∈ L2(R× S1). (49)

Since L2(R × S1) = L2(R) ⊗ L2(S1), π is simply the tensor product π = w ⊗ λ where w is the
wavelet representation of the affine group

w(b, a)g(x) = a−1/2 g((x− b)/a), g ∈ L2(R), (50)

and λ is the left regular representation of S1 on L2(S1), namely

λ(ϕ)h(ϑ) = h(ϑ− ϕ), h ∈ L2(S1). (51)

In what follows, we denote by Fx the unitary Fourier transform from L2(R) onto L2(R̂), which is
also regarded as a unitary map from L2(R × S1) onto L2(R̂) ⊗ L2(S1). Furthermore, we denote
by Fϑ the unitary Fourier transform from L2(S1) onto `2(Z), which is also regarded as a unitary
map from L2(R× S1) onto L2(R)⊗ `2(Z). Explicitly, if v ∈ C∞c (R× S1), then

Fxv(ρ, ϑ) =
∫

R
v(x, ϑ) e−2πiρx dx, (52a)

Fϑv(x, n) =
∫

R
v(x, ϑ) e−inϑ

dϑ

2π
=
∫

R
v(x, ϑ)en(ϑ)

dϑ

2π
, (52b)

where en(ϑ) = einϑ. The partial Fourier transform Fϑv of any v ∈ L2(R × S1) can be identified
with the sequence of functions (vn)n∈Z in L2(R), where vn = Fϑv(·, n). Hence

v =
∑
n∈Z

vn ⊗ en, ‖v‖2L2(R×S1) =
∑
n∈Z
‖vn‖2L2(R). (53)

To simplify the computations, we restrict the representation π to the closed subspace H =
F−1
x L2(R̂+)⊗L2(S1), so that the wavelet representation w acts irreducibly on F−1

x L2(R̂+). Given
a vector u ∈ H, we denote by V the voice transform corresponding to the representation π of G
and the analyzing vector u, namely

V v(b, a, ϑ) = 〈v, π(b, a, ϑ)u〉H v ∈ H,

and by V w
n the voice transform corresponding to the representation w of the affine group and the

analyzing vector un, i.e.
V w
n g(b, a) = 〈g, w(b, a)un〉L2(R).
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We use the unitary operator Fx : H → L2(R̂+×S1) to obtain an intermediate equivalent version of π,
denoted Fx(π), acting on L2(R̂+×S1). This is defined via the intertwining Fx◦π(g) = Fx(π)(g)◦Fx
for every g ∈ G. The analytic expression of Fx(π) is immediately computed to be

Fx(π)(b, a, ϕ)v(ξ, ϑ) = a1/2 e−2πibξ v(aξ, ϑ− ϕ),

whereas from the structural point of view it may be written as

Fx(π) = ŵ ⊗ λ,

where ŵ(b, a) = Fx ◦ w(b, a) ◦ F−1
x .

The group G can be realized as the triangular subgroup of Sp(2,R) consisting of the matrices[
a−1/2R 0
ba−1/2R a1/2R

]
, b ∈ R, a > 0, R ∈ SO(2).

Thus, G may also be seen as the semidirect product R o (R+×SO(2)), where the homogeneous
factor R+×SO(2) acts on the normal subgroup R by isotropic dilations. We shall not distinguish
between S1 and SO(2) and write rotations as

Rϕ =
[
cosϕ − sinϕ
sinϕ cosϕ

]
, ϕ ∈ [0, 2π).

We show below that π is equivalent to the metaplectic representation µ as restricted to the above
group, defined in the frequency domain by

µ(b, a, ϕ)v(ξ) = a1/2e−2πib|ξ|2v(a1/2R−ϕξ), v ∈ L2(R̂2).

The space-domain version of this representation explains the reason of the name Schrödingerlets.
Denote by µ̂ the representation obtained by conjugating µ with the Fourier transform, namely

µ̂(g)f = F−1 ◦ µ(g) ◦ F .

We now interpret b ∈ R as a time parameter and look at the evolution flow of f ∈ L1(R2)∩L2(R2)

(b, x) 7→ µ̂bf(x) = µ̂(b, 1, 0)f(x) =
∫

R̂2
f̂(ξ)e−2πib|ξ|2e2πix·ξ dξ.

It is then straightforward to verify that the flow µ̂bf satisfies the Schrödinger equation(
2πi

∂

∂b
+ ∆

)
µ̂bf(x) = 0,

where ∆ is the spacial Laplacian

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

.

It is in this sense that the group is generated by (dilations, rotations and) flows.

We now prove the equivalence. The unitary map Ψ : L2(R̂2)→ L2(R̂+×S1), defined by

Ψv(ξ, ϑ) = π1/2 v(
√
ξ cosϑ,

√
ξ sinϑ),

intertwines µ with Fx(π) because, for v ∈ L2(R̂2), we have on the one hand

Ψ (µ(b, a, ϕ)v) (ξ, ϑ) = Ψ
(
a1/2e−2πib|·|2v(a1/2R−ϕ(·))

)
(ξ, ϑ)

= π1/2a1/2e−2πib|(
√
ξ cosϑ,

√
ξ sinϑ)|2v

(
a1/2R−ϕ(

√
ξ cosϑ,

√
ξ sinϑ)

)
= π1/2a1/2e−2πibξv

(√
a(
√
ξ cos(ϑ− ϕ),

√
ξ sin(ϑ− ϕ))

)
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and on the other hand

Fx(π)(b, a, ϕ) (Ψv) (ξ, ϑ) = a1/2 e−2πibξ(Ψv)(aξ, ϑ− ϕ)

= a1/2 e−2πibξ π1/2v(
√
aξ cos(ϑ− ϕ),

√
aξ sin(ϑ− ϕ)),

as claimed. In conclusion, since π and Fx(π) are equivalent, so are π and µ.

We point out that Ψ is simply the change from rectangular to polar-like coordinates (
√
ξ, ϑ),

together with the appropriate L2-normalization.

Since the wavelet representation is irreducible, while λ completely reduces to ⊕n∈Ze−n, where
each function en is regarded as a character of S1, then

π =
⊕
n∈Z

w ⊗ e−n,

which expresses π as a sum of irreducibles. This allows us to view the voice transform of π as a
Fourier series of one-dimensional wavelet transforms, as clarified in the next proposition.

Proposition 4.10. Let u =
∑
n∈Z un ⊗ en ∈ H. The voice transform V associated with π and u

admits the trigonometric expansion

V v(b, a, ϕ) =
∑
n∈Z

V w
n vn(b, a) einϕ, (54)

where the series converges pointwise for all (b, a, ϕ) ∈ G and where

V w
n vn(b, a) =

∫
S1
V v(b, a, ϑ)e−inϑ

dϑ

2π
. (55)

1.2. Proof. Since Fϑ is a unitary map, for all (b, a, ϕ) ∈ G

〈v, π(b, a, ϕ)u〉H = 〈Fϑv,Fϑ (w(b, a)⊗ λ(ϑ))u〉L2(R)⊗`2(Z)

= 〈Fϑv,
(
w(b, a)⊗Fϑλ(ϕ)F−1

ϑ

)
Fϑu〉L2(R)⊗`2(Z)

=
∑
n∈Z
〈vn, w(b, a)un〉L2(R)e−n(ϕ)

=
∑
n∈Z

V w
n vn(b, a)einϕ,

where the third line is due to the fact that the action of Fϑλ(ϑ)F−1
ϑ on `2(Z) is the multiplication

operator by the sequence (e−n(ϕ))n. For fixed (b, a) ∈ R o R+, the function ϑ 7→ V v(b, a, ϑ) is
continuous and, hence, integrable on S1. Therefore, by de la Vallée–Poussin theorem, (see iii) of
Theorem 11.3 in [39]), we obtain (55).

The Fourier expansion (54) shows how to construct admissible vectors as series of wavelets.
This result has been originally obtained in [18] and in general setting in [40]. For the reader’s
convenience, we give here a more direct proof.

Proposition 4.11. The representation π is reproducing and a vector u =
∑
n∈Z un ⊗ en ∈ H is

admissible for π if and only if for all n ∈ Z∫
R+

|Fxun(ξ)|2 dξ
ξ

= 1. (56)
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Furthermore, given a sequence (un)n∈Z with un ∈ F−1L2(R̂+), we have∑
n∈Z

un ⊗ en ∈ H ⇐⇒
∑
n∈Z

∫
R+

|Fxun(ξ)|2dξ < +∞. (57)

If u is an admissible vector, the voice transform from H into L2(G) = L2(R o R+)⊗ L2(S1) is

V2v =
∑
n∈Z

V w
n vn ⊗ en v =

∑
n∈Z

vn ⊗ en ∈ H (58)

and the series (54) converges also in L2(G).

Proof. Admissibility of u means that ‖V v‖L2(G) = ‖v‖H must hold for all v ∈ H. Fix n ∈ Z
and choose v = vn ⊗ en with vn ∈ F−1L2(R̂+). By (54), when computing the norm, the integral
on the circle is equal to 1, whereas the integration on R o R+ provides the classical admissibility
condition, namely Calderón’s equations (56).

Conversely, suppose (56) true for every n ∈ Z. Fix v ∈ H. Given (b, a) ∈ R o R+, (55) implies
that the function V v(b, a, ·) is in L2(S1) if and only if the sequence (V vn(a, b))n∈Z is in `2(Z) and,
under this assumption, Fubini theorem yields

‖V v‖2L2(G) =
∫

RoR+

∑
n∈Z
|V w
n vn(b, a)|2 dbda

a2
=
∑
n∈Z

∫
R
|vn(x)|2dx = ‖v‖2H (59)

because by (56) for each n the voice V w
n is an isometry from F−1

x L2(R̂+) into L2(RoR+, dbda/a
2).

The last equality is due to (53). Equation (57) is a consequence of (53) and the fact that Fx is
unitary.

To prove that π is reproducing, it is enough to show there exists a sequence (un)n in F−1L2(R̂+)
satisfying both (56) and (57). Fix u0 ∈ F−1L2(R̂+) satisfying (56), i.e., an admissible vector for
the wavelet representation w. For all n ∈ Z define the functions un ∈ F−1L2(R̂+) as

un(x) = anu0(anx), Fxun(ξ) = Fxu0(a−1
n ξ),

where an > 0 and
∑
n∈Z an < +∞. Since u0 satisfies (56), so do all the functions un. Further,∑

n∈Z

∫
R+

|Fxu0(ξ)|2dξ =
∑
n∈Z

∫
R+

|Fxu0(a−1
n ξ)|2dξ = ‖u0‖2

∑
n∈Z

an < +∞,

so that by (57) the vector u =
∑
un ⊗ en is in H and is admissible for π.

Finally, we prove (58). By (59) the series
∑
n∈Z V

w
n vn ⊗ en converges in L2(G) to V2v.

Now we come to the integrability question. The idea is based on the very simple observation
that Calderón’s equation (56) is invariant under dilations.

Proposition 4.12. There exist admissible vectors u ∈ H whose kernel K = V2u belongs to⋂
p∈I L

p(G) but not to L1(G).

Proof. Define u as in the second part of the proof of the above proposition. Using (58) we write
K =

∑
Kn ⊗ en where Kn = V w

n un and the series converges both in L2(G) and pointwise. By a
simple change of variable, we get that Kn(b, a) = anK0(anb, a). Therefore for any p ∈ I

‖K‖p 6
∑
n∈Z

an

(∫
RoR+

|K0(anb, a)|p dbda
a2

)1/p

= ‖K0‖p
∑
n∈Z

a1−1/p
n .
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In order to construct u, it is therefore sufficient to take a positive sequence for which
∑
n∈Z a

α
n

converges for every α ∈ (0, 1].

We now prove that the kernel is not in L1(G). By contradiction, assume that K ∈ L1(G).
Fubini’s theorem implies that for almost all a ∈ R+ the function K(·, a, ·) is in L1(R×S1). Hence,
regarding R× S1 as an abelian group, its Fourier transform

FK(ξ, n) =
∫

R×S1
K(b, a, ϕ)e−inϕe−2πibξdb

dϕ

2π

=
∫

R

(∫
S1
K(b, a, ϕ)e−inϕdb

)
e−2πibξ dϕ

2π

is in C0(R̂× Z). By (55), it holds that

FK(ξ, n) =
∫

R
anK0(anb, a)e−2πibξ db

=
∫

R
K0(b)e−2πib ξ

an db = ĝ(
ξ

an
),

where ĝ is the Fourier transform of the function K0(·, a), which is in L1(R) by Fubini’s theorem.
Fix ξ ∈ R̂ and set ξ = anξ in the above equality. Then

ĝ(ξ) = lim
n→∞

FK(anξ, n) = 0,

because FK ∈ C0(R̂×Z). Hence, by injectivity of the Fourier transform, K0(b, a0) = 0 for almost
all b ∈ R. Since the above equality holds for almost all a ∈ R+, we get that K0 = 0, which is a
contradiction.

5 L1-kernels: the non irreducible coorbit theory

In this section, we apply our machinery and show that the standard setup of coorbit theory makes
sense without assuming that the representation π is irreducible, because it corresponds to the
case arising from the classical choice T = L1

w(G). The fact that irreducibility is a somewhat
redundant assumption has been perhaps known to some extent, but it is not easy to pin down
precise statements in the literature. Theorem 5.1 below contains a summary of the most relevant
facts.

It is perhaps worthwhile observing that the present case is structurally different from the case
discussed in Section 4.1 because L1

w(G) is not a reflexive space.

Throughout this section, we fix a continuous function w : G→ (0,+∞) satisfying the following
assumptions (see [4]):

w(xy) ≤ w(x)w(y) (60a)
w(x) ≥ 1 (60b)

for all x, y ∈ G. We choose as target space T the Banach space L1
w(G) and denote by j the

canonical inclusion into L1
loc(G) ⊂ L0(G). Since j is canonical, we do not write it explicitly,

especially because it would conflict with the current literature, where no explicit mention of the
embedding is ever made.
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Since Lemma 4.1 and Lemma 4.2 do not depend on Assumption (38b),

L1
w(G)# = {Φ ∈ L0(G) | w−1Φ ∈ L∞(G)}

the left regular representation λ leaves L1
w(G) invariant, and the restriction ` of λ to L1

w(G) is a
continuous representation that satisflies

‖λ(x)‖ ≤ w(x), x ∈ G. (61)

We assume that there exists an admissible vector u ∈ H whose voice transform V2u is in L1
w(G)

and construct the corresponding reservoir Sw of test functions. We are in a position of stating
the main properties of the standard setup, without the assumption that the representation is
irreducible.

Theorem 5.1. Take a reproducing representation π of G acting on the Hilbert space H and a
weight w satisfying (60a) and (60b). Choose an admissible vector u ∈ H such that

K(·) = 〈u, π(·)u〉H ∈ L1
w(G)

and set

Sw = {v ∈ H | 〈v, π(·)u〉H ∈ L1
w(G)},

‖v‖Sw =
∫
G

|〈v, π(x)u〉H|w(x)dx.

[a)]The space Sw is a Banach space and the canonical inclusion i : Sw → H is continuous and
with dense range. The representation π leaves Sw invariant, its restriction τ is a continuous
representation acting on Sw, the operator norms satisfy ‖τ(x)‖ ≤ w(x) for all x ∈ G, and

i(τ(x)v) = π(x)i(v) x ∈ G, v ∈ Sw.

Endowing H with the weak topology and S ′ with the weak-∗ topology, the transpose mapping
ti : H → S ′w is continuous, injective and with dense range, and satisfies the intertwining

tτ(x) ti(w) = ti(π(x)w) x ∈ G, w ∈ H.

The restricted voice transform V0 : Sw → L1
w(G) is an isometry intertwining τ and λ and its

range is the closed subspace

M1 = {f ∈ L1
w(G) | f ∗K = f},

For all f ∈ L1
w(G), the Fourier transform of f at u exists in Sw and satisfies

V0π(f)u = f ∗K.

Furthermore, the map
L1
w(G) 3 f 7→ π(f)u ∈ Sw

is continuous and its restriction to M1 is the inverse of V0. The extended voice transform
Ve : S ′w → L∞w−1(G) is injective, continuous (when both spaces are endowed with the topology
of the compact convergence) and intertwines tτ and λ. The range of Ve is the closed subspace

M∞ = {Φ ∈ L∞w−1(G) | Φ ∗K = Φ} ⊂ C(G).

For all T ∈ S ′w and v ∈ Sw
〈T, v〉Sw = 〈VeT , V0v〉L1

w(G). (62)
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For all Φ ∈ L∞w−1(G) the Fourier transform of Φ exists at u in S ′w and satisfies

Veπ(Φ)u = Φ ∗K.

The map
M∞ 3 Φ 7→ π(Φ)u ∈ S ′w

is the inverse of Ve and coincides with the restriction of the map tV0 to M∞, namely

Ve( tV0Φ) = Veπ(Φ)u = Φ, Φ ∈M∞. (63)

tii(Sw) = {T ∈ S ′w | VeT ∈ L1
w(G)} = {π(f)u | f ∈M1}.

1.2.3.4.5.6.7.8.9. Proof. Since L1
w(G) ⊂ L1(G) and K,V2v ∈ L∞(G) for all v ∈ H, Assumptions 1 and 2 are satisfied.

[a)]By the first part of Theorem 3.1 which does not depend on Assumption 3. The space S
is a Banach space because M1 is such. Apply Theorem 3.1. Moreover, by (61)

‖τ(x)v‖Sw = ‖V0τ(x)v‖1,w = ‖λ(x)V0v‖1,w ≤ w(x)‖V0v‖1,w = w(x)‖v‖Sw .

Apply Theorem 3.1. Apply Theorem 3.2. Fix f ∈ L1
w(G) and set Ψ : G → Sw, Ψ(x) =

f(x)τ(x)u. We show that Ψ is Bochner-integrable with respect to β. The map Ψ is β-
measurable since f ∈ L0(G) and x 7→ τ(x)u is continuous from G into L1

w(G), and, by item
b),

‖Ψ(x)‖Sw = |f(x)|‖τ(x)u‖Sw ≤ w(x)‖u‖Sw |f(x)|,
which is in L1(G) since f ∈ L1

w(G). Set

π(f)u =
∫
G

f(x)τ(x)u dx.

Clearly, for all v ∈ Sw

〈 tiiπ(f)u, v〉Sw =
∫
G

f(x)〈i(τ(x)u), i(v)〉Hdx =
∫
G

f(x)〈π(x)u, i(v)〉Hdx.

Hence tiiπ(f)u satisfies (14) and we can identify π(f)u with tiiπ(f)u. So Veπ(f)u = V0π(f)u.
The fact that V0π(f)u = Φ ∗K follows from (20) with F = L1

w(G) and E = Sw. The fact
that f 7→ π(f)u is the inverse of V0 follows from (21c) in Proposition 2.6. We first prove that
VeS ′w ⊂ L∞w−1(G). Take T ∈ S ′w. For all x ∈ G, by (61)

|〈T, τ(x)u〉Sw | ≤ ‖T‖S′w‖τ(x)u‖Sw = ‖T‖S′w‖λ(x)V u‖1,w ≤ w(x)‖T‖S′w‖K‖1,w,

so that w−1VeT is bounded and continuous. We now prove the reconstruction formula (62).
Fix v ∈ Sw and define the map Ψ : G→ Sw by Ψ(x) = 〈π(x)u, i(v)〉Hτ(x)u = V0v(x)τ(x)u.
We show that it is Bochner-integrable with respect to β. It is continuous since both V0v and
τ(·)u are continuous, and

‖Ψ(x)‖Sw = |V0v(x)|‖τ(x)u‖Sw ≤ w(x)|V0v(x)|‖K‖1,w,

which is in L1(G) by definition of Sw. Hence there exists wv ∈ Sw such that

wv =
∫
G

〈π(x)u, i(v)〉Hτ(x)u dx.

For all z ∈ H we have ti(z) ∈ S ′w and

〈z, i(wv)〉H = 〈 ti(z), wv〉Sw =
∫
G

〈π(x)u, i(v)〉H〈 ti(z), τ(x)u〉Swdx

=
∫
G

〈π(x)u, i(v)〉H〈z, π(x)u〉Hdx = 〈z, i(v)〉H,
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that is, wv = v. Hence

v =
∫
G

〈π(x)u, i(v)〉Hτ(x)u dx,

where the integral is a Bochner integral in Sw. Take T ∈ S ′w. Then for all v ∈ Sw

〈T, v〉Sw =
∫
G

〈π(x)u, i(v)〉H〈T, τ(x)u〉Sw dx,

which proves the reconstruction formula. This, in turn, implies that Ve is injective. Apply
item a) of Proposition 2.6 with E = Sw and F = L∞w−1(G). Items b) and d) of Proposition 2.6
with F = L∞w−1(G) and E = Sw show that the range of Ve is the closed subspace M∞ and
that the inverse of Ve is Φ 7→ π(Φ)u. Since V0Sw ⊂ L1

w(G) and V0v = Ve
tii(v) for all v ∈ Sw,

it follows that tii(Sw) ⊂ {T ∈ S ′w | VeT ∈ L1
w(G)}. Furthermore, Proposition 2.6 with

F = L1
w(G) and E = Sw gives that

{T ∈ S ′w | VeT ∈ L1
w(G)} = {π(f)u | f ∈M1}.

Item d) of this theorem finally implies that {π(f)u | f ∈M1} = Sw.

As shown in the previous proof, Assumptions 1 and 2 are satisfied. The reconstruction for-
mula (62) makes clear that u is a cyclic vector for τ , which is equivalent to Assumption 3 because
V0τ(x)u = `(x)K and V0 is an isometry from Sw onto M1. Furthermore, (44) with v = τ(x)u
implies that also Assumption 4 holds true.

From now until the end of this section we choose a Banach space Y with a continuous embedding
j : Y → L1

loc(G), denoted f 7→ f(·), and with a continuous involution f 7→ f . We further suppose
that there are two continuous representations ` and r of G on Y satisfying

[i)]for all x ∈ G and all f ∈ Y

j(`(x)f) = λ(x)j(f), j(r(x)f) = ρ(x)j(f); (64)

for all f ∈ Y and almost every x ∈ G,

j(f)(x) = j(f)(x). (65)

Proposition 5.2. Assume that Y is a Banach space with a continuous representation r for which
there exists a continuous embedding j : Y → L1

loc(G), denoted f 7→ f(·), such that, for all x ∈ G,
all f ∈ Y and almost every y ∈ G it holds that r(x)f (y) = f(yx). Suppose that g ∈ L1

loc(G) is
such that for all f ∈ Y ∫

G

|g(x−1)|‖r(x)f‖Y dx < +∞. (66)

Then j(f) and g are convolvable, there exists f ∗ g ∈ Y satisfying j(f) ∗ g = j(f ∗ g) and

‖f ∗ g‖Y ≤
∫
G

|g(x−1)|‖r(x)f‖Y dx.

a)b)c)d)e)f)g)h)i)1.2. Proof. The proof is closely related to the proof of Proposition 6 Chapter VIII.4.2 of [29]. Fix f ∈ Y
and g ∈ L1

loc(G) and set
Ψ : G→ Y, Ψ(x) = g(x−1)r(x)f.

We claim that Ψ is β-integrable in the Bochner sense. Since r is a continuous representation, the
map x 7→ r(x)f is continuous from G to Y and hence it is β-measurable. Since g ∈ L1

loc(G), so is
ǧ, and hence Ψ is β-measurable. Furthermore,

x 7→ ‖Ψ(x)‖Y = |g(x−1)|‖r(x)f‖Y
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is β-integrable by assumption. Hence Ψ is β-integrable. Define

v =
∫
G

g(x−1)r(x)f dx ∈ Y,

which clearly satisfies

‖v‖Y ≤
∫
G

|g(x−1)|‖r(x)f‖Y . (67)

Recall that Cc(G) ⊂ Y # and take ϕ ∈ Cc(G). Then by (8) with qi(f) = ‖f‖ (Y is normed)∫
G

|v(y)||ϕ(y)| dy =
∫
G

|g(x−1)|
(∫

G

|f(yx)ϕ(y)|dy
)
dx ≤ C

∫
G

|g(x−1)|‖r(x)f‖Y dx,

which is finite by assumption. By Fubini theorem, the function

(x, y) 7→ g(x−1)f(yx)ϕ(y)

is in L1(G×G) and, hence, there exists a negligible set Nϕ such that for all y 6∈ Nϕ the function

x 7→ g(x−1)f(yx)ϕ(y)

is in L1(G). Put Eϕ = {x ∈ G | ϕ(x) 6= 0}. By the change of variable x 7→ y−1x, for all
y ∈ Eϕ \Nϕ, the function

x 7→ f(x)g(x−1y)

is in L1(G). Take a countable family {ϕk}k∈N such that
⋃
k Eϕk = G and set N =

⋃
kNϕk . Then

N is negligible and for all y /∈ N the map x 7→ f(x)g(x−1y) is integrable. Hence, for all ϕ ∈ Cc(G),
Fubini theorem gives ∫

G

v(y)ϕ(y)dy = 〈v, ϕ〉Y

=
∫
G

g(x−1)〈r(x)f, ϕ〉Y dx

=
∫
G

g(x−1)
(∫

G

f(yx)ϕ(y) dy
)
dx

=
∫
G

ϕ(y)
(∫

G

f(yx)g(x−1) dx
)
dy

where 〈·, ·〉Y denotes the duality between Y and Y # ⊂ Cc(G) introduced in (6). By the change of
variable x 7→ y−1x in the inner integral, we get∫

G

v(y)ϕ(y)dy =
∫
G

(∫
G

f(x)g(x−1y)dx
)
ϕ(y)dy. (68)

This means that j(f) and g are convolvable, j(v) = j(f)∗g and, by (67), the inequality ‖f ∗ g‖Y ≤∫
G
|g(x−1)|‖r(x)f‖Y holds true.

Corollary 5.3. Take a weight w such that ‖r(x)‖ ≤ w(x) for all x ∈ G. Then:

[a)]For all f ∈ Y and ǧ ∈ L1
w(G), j(f) and g are convolvable, there exists f ∗ g ∈ Y such

that j(f ∗ g) = j(f) ∗ g, the map

Y 3 f 7→ f ∗ g ∈ Y

is continuous and ‖f ∗ g‖Y ≤ ‖f‖Y ‖g‖1,w. The set

MY = {f ∈ Y | f ∗ g = f},

is a closed `-invariant subspace of Y .
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1.2. Proof. Item a) follows from Proposition 5.2, observing that (67) is satisfied and∫
G

|g(x−1)|‖r(x)f‖Y dx ≤ ‖f‖Y ‖ǧ‖1,w.

As for b), since Y is a metrizable topological space, it is sufficient to prove thatMY is sequentially
closed. Take a sequence (fn)n in MY converging to f ∈ Y . Possibly passing to a subsequence,
we can assume that there exists a negligible set N such that for all x /∈ N the sequence (fn(x))n
converges to f(x). Furthermore, possibly changing N , we can also assume that, for all n and
x /∈ N , j(fn) ∗ g (x) = fn(x).

Since f 7→ f ∗ g and j are continuous, j(fn) ∗ g converges to j(f) ∗ g in L1
loc(G). Hence, by

Lemma 6.1 in the appendix, possibly passing again to a subsequence and again redefining N , we
can also assume that for all x /∈ N limn j(fn) ∗ g (x) = j(f) ∗ g (x). Then

j(f) ∗ g (x) = lim
n
j(fn) ∗ g (x) = lim

n
fn(x) = f(x),

so that j(f) ∗ g = j(f) in L0(G), that is f ∈MY . Finally, given x ∈ G and f ∈MY , by (77b) ,

j(`(x)f) = λ(x)j(f) = λ(x)(j(f) ∗ g) = λ(x)j(f) ∗ g = j(`(x)f) ∗ g,

which means that `(x)f ∈MY .

We apply the above corollary with the choice g = K, which is in L1
w(G) by assumption, together

with Ǩ = K. Notice that, although Assumption 5 is not satisfied, b) of Corollary 5.3 guarantees
that MY is a closed subspace of Y . Furthermore we assume that

MY ⊂ L∞w−1(G). (69)

Since by construction V2v ∈ L1
w(G) for all v ∈ S and L∞w−1(G) = L1

w(G)#, (69) implies Assump-
tion 6. Hence we can define

Co(Y ) = {T ∈ S ′w | VeT ∈ Y },
‖T‖Co(Y ) = ‖VeT‖Y .

The inclusion (69) is satisfied by all the classical Banach spaces considered in [2]. This fact is
shown in the proof of Proposition 4.3.

Theorem 5.4. The space Co(Y ) is a π-invariant Banach space and the restriction of Ve to Co(Y )
is an isometry from Co(Y ) onto MY . For all Φ ∈MY , π(Φ)u exists in S ′w, it actually belongs to
Co(Y ) and satisfies

π(VeT )u = T, T ∈ Co(Y ) (70a)

Veπ(Φ)u = Φ, Φ ∈MY . (70b)

Proof. Apply Proposition 2.6.

5.1 Completeness and weights bounded from below
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Take a continuous function w : G → (0,+∞) satisfying only (60a). Take a square-integrable
representation π acting on H and fix an admissible vector u ∈ H such that

K(·) = 〈u, π(·)u〉H ∈ L1
w(G),

and set

Sw = {v ∈ H | 〈v, π(·)u〉H ∈ L1
w(G)}

‖v‖Sw =
∫
G

|〈v, π(x)u〉H|w(x)dx.

Theorem 5.5. The space Sw is a Banach space if and only if

inf
x∈G

w(x) > 0. (71)

Proof. Assume that infx∈G w(x) ≥ c > 0. We can always suppose that c = 1 so that (60b) holds
true. Indeed, if c < 1, we redefine w as w/c, so that

w(xy)
c
≤ w(x)w(y)

c2
c ≤ w(x)

c

w(y)
c

and w/c satisfies (60a). Since L1
w(G) = L1

w/c(G) with equivalent norms, clearly the fact that Sw
is a Banach space does not depend on the choice of c. Item a) of Theorem 5.1 states that Sw is a
Banach space.

Assume that Sw is a Banach space. Define S∗w as the vector space Sw with the norm

‖v‖∗ = max{‖v‖Sw , ‖v‖H}.
We claim that S∗w is complete. Take a Cauchy sequence (vn)n with respect to ‖·‖∗. By construction,
it is a Cauchy sequence also with respect to both ‖·‖Sw and ‖·‖H. Since Sw and H are complete,
there exist v′ ∈ Sw and v ∈ H such that

lim
n→+∞

‖vn − v‖H = 0 lim
n→+∞

‖vn − v′‖Sw = 0.

Since the voice trasform is an isometry both from H into L2(G) and from Sw into L1
w(G), the

sequence (V vn)n converges to V v in L2(G) and to V v′ in L1
w(G). Hence, possibly passing to a

subsequence, (V vn)n converges almost everywhere to V v and to V v′. Since w > 0, V v = V v′

almost everywhere and, hence, v = v′ by the injectivity of V , so that v ∈ S∗w. Furthermore

lim
n→+∞

‖vn − v‖∗ = lim
n→+∞

max{‖vn − v‖Sw , ‖vn − v‖H}

= max{ lim
n→+∞

‖vn − v‖Sw , lim
n→+∞

‖vn − v‖H} = 0.

Hence S∗w is complete and the natural inclusion i : S∗w → Sw is clearly continuous and bijective.
Since Sw is a Banach space, the open mapping theorem implies that the inverse is also continuous,
so that there is a constant c > 0 such that

c‖v‖∗ ≤ ‖v‖Sw ≤ ‖v‖∗.
As usual, for all x ∈ G and v ∈ Sw

‖π(x)v‖Sw = ‖λ(x)V v‖L1
w(G) ≤ w(x)‖v‖Sw , ‖π(x)v‖H = ‖v‖H.

Then, if v 6= 0, for all x ∈ G
c‖v‖H = c‖π(x)v‖H ≤ c‖π(x)v‖∗ ≤ ‖π(x)v‖Sw ≤ w(x)‖v‖Sw

taking the infimum over G, we get
0 < c ≤ inf

x∈G
w(x).
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6 Appendix: some functional analysis

6.1 Notation

The set L0(G) is a metrizable complete topological vector space, and C0(G) is dense in L0(G)
(Propositions 19 and 20 Chapter IV.5.11 of [30]). Since G is second countable, C0(G) is separable
(with respect to the convergence on compact subsets, hence with respect to the convergence in
measure) and L0(G) is separable, too. Furthermore, if (fn) is a sequence converging to f in L0(G),
then there exist a subsequence (fnk)k and a negligible set N ⊂ G such that

lim
k→+∞

fnk(x) = f(x) for all x ∈ G \N. (72)

(Corollary of Proposition 19 Chapter IV.5.11 of [30]).

If G is compact L1
loc(G) = L1(G) is a separable Banach space. Otherwise, a saturated funda-

mental system of semi-norms is given as follows (recall that a family is saturated if the maximum
of any finite set of seminorms is in the family). Since G is second countable, take a countable
increasing family (Ki)i∈N of compact subsets of G such that Ki ⊂ Ki+1 and

⋃
iKi = G. For all

i ∈ N put

qi(f) =
∫
Ki
|f(x)|dx. (73)

Then, for each compact set K there exists i ∈ N such that K ⊂ Ki and∫
K
|f(x)|dx ≤ qi(f).

With the induced topology, L1
loc(G) is complete (see Ex. 31 Chapter V.5 of [30]), hence it is a

Fréchet space.

Lemma 6.1. If (fn) is a sequence in L1
loc(G) converging to f in L1

loc(G), then there exists a
subsequence (fnk)k that converges to f almost everywhere.

Proof. If G is compact, the claim is clear. If not, take the increasing sequence of compact subsets
(Ki)i∈N defining the fundamental family of semi-norms (73). The topology of L1

loc(G) is such that
(fn)n converges to f in L1(Ki) for all i ∈ N. We procede by induction on N. Suppose that we
have found a subsequence (f

n
(i)
k

)k and a negligible subset Ni ⊂ Ki such that

lim
k→+∞

f
n

(i)
k

(x) = f(x) for all x ∈ Ki \Ni.

Clearly (f
n

(i)
k

)k converges to f in L1(Ki+1) and we can further extract a subsequence (f
n

(i+1)
k

)k for
which there exists a negligible subset Ni+1 ⊂ Ki+1 such that

lim
k→+∞

f
n

(i+1)
k

(x) = f(x) for all x ∈ Ki+1 \Ni+1.

Set N =
⋃
i∈N Ni and fnk = f

n
(k)
k

. Given x /∈ N , fix h such that x ∈ Kh , so that x ∈ Ki \Ni for
all i ≥ h. Then (f

n
(k)
k

(x))k≥h is a subsequence of (f
n

(h)
k

(x))k≥h which converges to f(x).

Given f ∈ L0(G), f̌ ∈ L0(G) since a subset E ⊂ G is negligible if and only if E−1 is negligible.
Notice that

f̌ ∈ Lp(G) ⇐⇒ ∆−1/pf ∈ Lp(G) ⇐⇒ f ∈ Lp(G,∆−1 · β) (74)

‖f̌‖p = ‖∆−1/pf‖p. (75)

Since ∆ is continuous, L1
loc(G) is invariant under the map f 7→ f̌ .
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6.2 Representations

Let E be a locally convex space with a saturated fundamental system {qi}i of semi-norms and τ
a (linear) representation of G on E.

[i)] The representation τ is separately continuous if[a)]

1. (a) for all x ∈ G, τ(x) is continuous from E to E;
(b) for all v ∈ E, x 7→ τ(x)v is continuous from G into E.

2. The representation τ is continuous if
[a)]if (x, v) 7→ τ(x)v is continuous from G× E into E.

(a)3. The representation τ is equicontinuous if
[a)]if (x, v) 7→ τ(x)v is continuous from G × E into E; τ(G) is equicontinuous, i.e. for
every semi-norm qi there exists a semi-norm qj and a constant C such that qi(τ(x)) ≤
Cqj(τ(x)) for all x ∈ G.

If E is a Fréchet space, then 1) implies 2) (Proposition 1 Chapter VIII.2.1 of [30]). Furthermore,
τ is continuous if and only if for any compact set Q of G, τ(Q) is equicontinuous and the map
x 7→ τ(x)v is continuous for all v ∈ D, where D is a total set in E (Remark 2 of Definition 1
Chapter VIII.2.1 of [30]).

6.3 Convolutions

The basic property of convolution is given by the following lemma.

Lemma 6.2. If f ∗g exists, it is a β-measurable function whose equivalence class in L0(G) depends
only on the equivalence classes of f and g.

(a)(b) Proof. Without loss of generality, we can suppose that both f and g are positive. The topological
isomorphism ψ : G × G → G × G, ψ(x, y) = (x, y−1x) has the property that a set E ⊂ G × G
is β ⊗ β-negligible if and only if ψ−1(E) is β ⊗ β-negligible. Indeed, take E a Borel measurable
subset of G×G, then

β ⊗ β(ψ−1(E)) =
∫
G

β(ψ−1(E)x)dx =
∫
G

β(xE−1
x )dx =

∫
G

β(E−1
x )dx

where Ex = {y ∈ G | (x, y) ∈ E} and ψ−1(E)x = {y ∈ G | (x, y−1x) ∈ E} = xE−1
x . Hence

β ⊗ β(ψ−1(E)) = 0 if and only if β(E−1
x ) = 0 for almost all x ∈ G, which is equivalent to the fact

that β(Ex) = 0 for almost all x ∈ G, i.e. β ⊗ β(E) = 0. As a consequence, the map ϕ = (f ⊗ g)ψ
is β ⊗ β-measurable, and if we change f ⊗ g on a negligible set, ϕ will change on a negligible
set, too. Since G is second countable, the measure β is moderated and Proposition 7.b) Chapter
V.8.3 of [30] shows that the map x 7→

∫
G
ϕ(x, y) dy is β-measurable, where the integral is finite by

assumption. Therefore,
∫
G
ϕ(x, y)dy depends only on the equivalence class of f and g.

If f, g ∈ L1
loc(G), f ∗g exists and |f | ∗ |g| is in L1

loc(G), then we say that f and g are convolvable.
Since f, g ∈ L1

loc(G), then µ = f ·β and ν = g ·β are (Radon) measures on G. The fact that f and
g are convolvable is equivalent to the fact that µ and ν admit a convolution, i.e. for all ϕ ∈ Cc(G)
the function (x, y) 7→ ϕ(xy) is µ⊗ ν-integrable, namely∫

G×G
|ϕ(xy)||f(x)||g(x)|dxdy < +∞, ϕ ∈ Cc(G).
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The two definitions agree, since:

[i)]if µ and ν admit a convolution, the map ϕ 7→
∫
G
ϕ(xy)dµ(x)dν(y) defines a measure on G

whose density is precisely f ∗ g (Proposition 10 Chapter VIII.3.2 of [29] and Proposition 10
Chapter VIII.4.5 of [29]); if |f |∗ |g| exists and is in L1

loc(G), then µ and ν admit a convolution
(Proposition 9 Chapter VIII.4.5 of [29]).

We recall the following sufficient conditions.

[a)]Corollary 20.14 of [41]: if f ∈ L1(G) and g ∈ Lp(G) with p ∈ [1,+∞], then f and g are
convolvable, f ∗ g belongs to Lp(G) and

‖f ∗ g‖p ≤ ‖f‖1‖g‖p. (76a)

Theorem 20.18 of [41]: if f ∈ Lp(G), g ∈ Lq(G) and ǧ ∈ Lq(G) with 1 < p < +∞,
1 < q < +∞ satisfying 1

p + 1
q = 1 + 1

r with r > 1, then f and g are convolvable and f ∗ g
belongs to Lr(G). Furthermore, if ‖ǧ‖q = ‖g‖q, then

‖f ∗ g‖r ≤ ‖f‖p‖g‖q. (76b)

Theorem 20.16 of [41]: under the same assumptions on f and g as in the previous item, if
1
p + 1

q = 1 with 1 < p < +∞, then f and g are convolvable and f ∗ g belongs to C0(G) and

‖f ∗ g‖∞ ≤ ‖f‖p‖ǧ‖q. (76c)

Theorem 20.16 of [41]: if f ∈ L1(G) and g ∈ L∞(G) (which is equivalent to ǧ ∈ L∞(G)) or
if f ∈ L∞(G) and ǧ ∈ L1(G), then f and g are convolvable, f ∗ g is a bounded continuous
function, and

‖f ∗ g‖∞ ≤ ‖f‖1‖g‖∞ or ‖f ∗ g‖∞ ≤ ‖f‖∞‖ǧ‖1 (76d)

In general, the convolution is not associative. We recall a sufficient condition as well as some other
useful relations.

Lemma 6.3. Given f, g ∈ L0(G),
ˇf ∗ g = ǧ ∗ f̌ (77a)

and, for all x ∈ G,

λ(x)f ∗ g = λ(x)(f ∗ g) ρ(x)f ∗ g = ∆(x−1)(f ∗ λ(x−1)g) (77b)

f ∗ λ(x) g = ∆(x−1)(ρ(x−1)f ∗ g) f ∗ ρ(x)g = ρ(x)(f ∗ g), (77c)

provided that one of the two sides of each equality exists.

If f, g, h ∈ L0(G) are such that either |f |∗|g| and (|f |∗|g|)∗|h| exist or |g|∗|h| and |f |∗(|g|∗|h|)
exist, then

f ∗ (g ∗ h) = (f ∗ g) ∗ h (77d)

and all the convolutions exist.

1.2.1.2.3.4. Proof. To prove (77a) just compute

ǧ ∗ f̌(x) =
∫
G

f̌(y−1x)ǧ(y)dy =
∫
G

f(x−1y)g(y−1)dy =
∫
G

f(y)g(y−1x−1)dy = f ∗ g(x−1).
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Next we prove (77d). Fubini theorem gives that, for all x ∈ X

(|f | ∗ |g|) ∗ |h|(x) =
∫
G×G
|f(y)||g(y−1z)||h(z−1x)|dydz

=
∫
G×G
|f(y)||g(z)||h(z−1y−1x)|dydz = |f | ∗ (|g| ∗ |h|)(x)

by the change of variable z 7→ yz. Hence the two assumptions implies that the map (y, z) 7→
f(y)g(y−1z)h(z−1x) is in L1(G × G). Since |f ∗ g| ≤ |f | ∗ |g|, all the convolutions in (77d) exist
and Fubini theorem implies the claimed equality. The remaining assertions are standard.

6.4 Scalar integration

Let E be a locally convex topological vector space, and let X be a Hausdorff locally compact second
countable topological space with a positive measure dx, which is finite on all compact subsets. A
function Ψ : X → E is called scalarly integrable if the scalar function 〈T,Ψ(·)〉E is integrable for
every T ∈ E′. If Ψ is scalarly integrable, the map

T 7→
∫
X

〈T,Ψ(x)〉Edx

defines a linear functional on E′, possibly not continuous; that is, there exists an element in the
algebraic dual E′∗, called the scalar integral of Ψ and denoted∫

X

Ψ(x)dx ∈ E′∗,

such that
〈T,
∫
X

Ψ(x)dx〉E =
∫
X

〈Ψ(x), T 〉Edx.

Usually one is interested to understand under which conditions the scalar integral lies in E. In
our paper we often look ar the case in which the argument takes its values in a dual space (or in
a space which embeds into a dual space), namely

Ψ : X −→ E′s,

where E′s is the space E′ endowed twith the weak*-topology, namely the topology of simple con-
vergence, so that (E′s)

′ = E.

A locally convex space E is said to have the property (GDF)7 if every linear map from E to a
Banach space which has sequentially closed graph is actually continuous (that is, the closed graph
theorem holds true for Banach space-valued linear maps defined on E). All the Fréchet spaces
enjoy the property (GDF) ([25], Chapter I.3.3, Corollary 5). Also, the dual space of any reflexive
Fréchet space satisfies the property with respect to the strong topology, namely the topology of
the convergence on bounded sets ([30], Chapter 6, Appendix, n◦ 2, Proposition 3).

The key theorem for the convergence of scalar integrals with values in a dual vector space is
the following.

Theorem 6.4 (Gelfand–Dunford, [30], Theorem 1, Chapter VI.1.4). Let E be a Hausdorff locally
convex topological vector space with the property (GDF). Then, for any scalarly integrable function
Ψ : X → E′s, we have ∫

X

Ψ(x)dx ∈ E′.

7The acronym GDF stands for “graphe dénombrablement fermé ”, namely “countably closed graph”.
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6.5 Intersections of Lp spaces

In this final section we recall, for the reader’s convenience, the main results obtained in [31],
specialized to our setting. Set I = (1,+∞) and define

T =
⋂
p∈I

Lp(µ)

with the initial topology, which makes each inclusion T ↪→ Lp(G) continuous, and

U = span
⋃
q∈I

Lq(G)

with the final topology, which makes each inclusion Lq(G) ↪→ U continuous.

Theorem 6.5 ([31]). The space T is a reflexive Fréchet space and U is a complete reflexive locally
convex topological vector space. For each g ∈ U , the linear map

f 7→
∫
G

g(x)f(x) dx = g(f)

is continuous and g 7→ g(·) identifies, as topological vector spaces, the dual of T with U . For each
f ∈ T , the linear map

g 7→
∫
G

f(x)g(x) dx = f(g)

is continuous and f 7→ f(·) identifies, as topological vector spaces, the dual of U with T .

Proof. Here we refer to [31]. Observe that the Haar measure β is σ-finite since G is locally
compact and second countable and β is finite on compact subsets. Furthermore, denoted by
I ′ = { p

p−1 | p ∈ I}, clearly I ′ = I. Proposition 2.1 and the following remark show that the map
f 7→ 〈f, ·〉U is a topological isomorphism from T onto the strong dual of U .

Theorem 2.1 and Corollary 3.2 show that the map g 7→ 〈g, ·〉T is a topological isomorphism
from U onto the strong dual of T .

Hence we can identify, as topological vector spaces, the dual of T with U and the dual of U
with T . So that both T and U are reflexive locally convex vector spaces. Theorem 3.1 proves that
T is a Frechét space and Corollary 3.3 shows that U is complete.

Note that, since T and U are reflexive spaces, they are barrelled (Theorem 2 IV.2.3 of [25]).
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